
API Security

L E A R N I N G M A D E E A S Y

Michael Isbitski

Salt Security Special Edition

Find out what APIs are and
how modern apps use them

Understand how to discover
and test your APIs

Get best practices on how
to protect your APIs

Compliments
of

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

www.salt.security.com

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API
Security

Salt Security Special Edition

by Michael Isbitski

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API Security For Dummies®, Salt Security Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used
without written permission. Salt Security and the Salt Security logo are trademarks or registered
trademarks of Salt Security, Inc. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN
ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER
AND AUTHORS ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR
PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

ISBN 978-1-119-85476-0 (pbk); ISBN 978-1-119-85477-7 (ebk)

Publisher’s Acknowledgments

For general information on our other products and services, or how to create
a custom For Dummies book for your business or organization, please contact
our Business Development Department in the U.S. at 877-409-4177, contact
info@dummies.biz, or visit www.wiley.com/go/custompub. Some of the
people who helped bring this book to market include the following:

Project Manager: Chad R. Sievers

Acquisitions Editor: Ashley Coffey

Editorial Manager: Rev Mengle

Business Development
Representative: Matt Cox

Project Editor: Vivek Lakshmikanth

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub

Table of Contents iii

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Foolish Assumptions .. 2
Icons Used in This Book ... 2
Beyond the Book .. 2

CHAPTER 1: Understanding APIs ... 3
Defining APIs ... 3

Recognizing the common types of APIs 3
Identifying API protocols .. 5

Designing Modern Applications with APIs... 6
Decoupling front ends and back ends ... 6
Considering impacts from microservices architecture 7
Altering the API picture: Cloud-native’s role 8

CHAPTER 2: Laying the Foundations for API Security 9
Documenting APIs .. 9

Steering clear of traditional documentation approaches 10
Working with API schema definitions ... 10

Testing APIs ... 11
Utilizing application security testing tools 11
Using API schema validators ... 12

Mediating 101: APIs and the Relevant Mechanisms 13
Deploying proxies — reverse and forward 14
Functioning as API mediation points .. 14
Enforcing policy with API management 15

CHAPTER 3: Getting the Lowdown on API Attacks 17
Understanding How API Attacks Differ from Application
Attacks ... 17

The front-end application is only a means to an end 18
APIs underpin digital supply chains .. 18

Taking a Closer Look at the OWASP API Security Top 10 19
API1:2019 Broken Object Level Authorization 20
API2:2019 Broken User Authentication 20
API3:2019 Excessive Data Exposure ... 21
API4:2019 Lack of Resources & Rate Limiting 22

iv API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API5:2019 Broken Function Level Authorization 22
API6:2019 Mass Assignment .. 23
API7:2019 Security Misconfiguration .. 24
API8:2019 Injection ... 24
API9:2019 Improper Assets Management 25
API10:2019 Insufficient Logging & Monitoring 26

Recognizing Automated Attack Patterns ... 26
Brute forcing, credential stuffing, and account takeover,
oh my! ... 26
The plague of scraping ... 27

CHAPTER 4: Securing APIs ... 29
Recognizing Why Architecture Is Essential 29

Focusing on architecture ... 30
Identifying core traits in an API security platform 30

Evolving Your Catalog: A Continuous Discovery of APIs 32
Considering discovery capabilities you need 32
Incorporating data classification ... 33

Protecting APIs Continuously .. 33
Identifying the detection capabilities you need 34
Focusing on the protection capabilities you need 35

Remediating APIs: Enhancing Capabilities and Streamlining
Workflow ... 36

Naming remediation capabilities you need 37
Adapting your incident response processes for APIs 38

Defining API Security Best Practices .. 38
API discovery and cataloging ... 39
Security testing .. 39
API mediation and architecture .. 40
Network security ... 40
Data security .. 40
Authentication and authorization ... 41
Runtime protection ... 41

CHAPTER 5: Ten Things You Can Do Now to Secure APIs 43

Introduction 1

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Application programming interfaces (APIs) serve as the
building blocks of modern application architecture and sys-
tem design. They create the on-ramps to the digital world,

keep everyone connected, facilitate business, make digital transfor-
mation possible, and continuously evolve modern computing. In all
your digital activities — across employee business applications,
ecommerce sites, health services, connected cars, banking applica-
tions, home automation, and mobile apps — you’re using APIs. The
fact that APIs enable so much sharing of data and services makes
them prime targets for attackers. Security practitioners must adapt
for the world of APIs so they’re better equipped to secure their
organization’s applications and data.

About This Book
API Security For Dummies, Salt Security Custom Edition, describes
how application architecture has evolved, how APIs are the foun-
dation of modern design, how those API foundations are threat-
ened, and how the API building blocks can be secured. This book
is conveniently organized into five chapters that do the following:

 » Arrive at a working definition of modern APIs so you can dig
into the many facets of API security.

 » Describe how application architecture has evolved, how
cloud technologies have impacted designs, and how DevOps
practices accelerate API growth.

 » Detail API implementation and operational activities that
factor into security, including documentation, testing,
mediation, and integration.

 » Describe how attackers abuse the business logic of APIs and
automate attacks to increase likelihood of success or do
further damage.

 » Increase awareness around the OWASP API Security Top 10
and the common API security gaps it spotlights.

2 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Highlight the technological capabilities you need to secure
APIs throughout their life cycles, including discovery, protec-
tion, and remediation.

 » Present ten prioritized things you can do now to start
securing APIs for your organization.

Foolish Assumptions
Although this book is written primarily for technical readers with
some level of experience in modern computing, everyone can
benefit from the information. I make very few assumptions when
writing about the world of APIs and API security. I assume you’ve
browsed a website or used mobile application in recent years and
are inclined to dig deeper into some inner workings. Knowing
how your digital world functions and is built on the foundations
of APIs is interesting in its own right. And it’s also enlightening
as to how the digital world can be threatened by malicious actors.

Icons Used in This Book
Throughout this book, I use icons to call attention to important
information. Here’s what you can expect:

This icon indicates that the information is useful and can save
time for a given activity.

When you see this icon, make sure you read and understand the
surrounding text. The tidbit points out important information
that’s worth reiterating.

This icon alerts you to a potential issue or pitfall. I point out where
others have made mistakes in the hopes that it saves you time and
spares some heartburn.

Beyond the Book
I can cover only so much in this short book, particularly with a
complex topic. If you find yourself hungry for more knowledge on
API security, just go to www.salt.security.

www.salt.security

CHAPTER 1 Understanding APIs 3

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Taking a closer look at what APIs are

 » Recognizing how apps use APIs

Understanding APIs

If you’re looking for a primer and background on APIs, you’ve
landed on the right chapter. Here I arrive at a working defini-
tion of application programming interface (API), particularly as

it relates to the Internet and web design. I cover some resulting
impacts of APIs to modern application and cloud-native design.

Defining APIs
Understanding API consumer types and API protocols is key to
selecting the most effective security techniques and controls
available to you. Application programming interfaces (APIs) are
sometimes used as a synonym for functions or libraries refer-
enced regularly in code. For example, web APIs are a specific type
of API designed for use in web designs and communications. Web
API design patterns have existed for more than 20 years, emerging
from service-oriented architecture (SOA) and back-end services
powering applications via web protocols. The following sections
discuss in greater detail the types of APIs and how APIs work.

Recognizing the common types of APIs
The term consumption refers to the API caller making a request to
an API to exercise functionality, query data, or manipulate data.

4 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The range of API types has evolved substantially over the years to
account for different business cases and usage models. Some of
the common API types include the following:

 » External APIs: These APIs support mobilized workforces and
customers accessing services from anywhere. As the name
implies, they’re exposed to users outside a protected
network or the Internet, often with relaxed network restric-
tions. Authentication and authorization may or may not be
used.

 » Public APIs: Public APIs are a type of external API designed
for consumption by users and machines across the Internet.
They have relaxed access controls or are designed for
anonymous access to increase consumption.

 » Open APIs: These APIs appear more frequently with open
banking initiatives including the financial industry. They help
promote innovation in a given industry, improve levels of
service integration, and provide freedom for customers to
transact or access data anywhere. Authentication and
delegated authorization are usually in place.

 » Internal APIs: These APIs are usually deployed and oper-
ated within a restricted network environment of a data
center or private cloud segment. They’re designed to be
consumed by other applications or users in that restricted
network. Authentication and authorization may be in place
but may be relaxed because exposure is limited.

 » Partner APIs: Organizations sometimes provide limited
access to internal APIs to select external suppliers to power
and expand their digital supply chains. The extent of access
control lies somewhere between that of internal and
external APIs.

 » Third-party APIs: These APIs, often consumed as cloud-
delivered services, or software as a service (SaaS), help
organizations move faster without re-creating functionality
or incurring more technical debt.

 » Acquired APIs: These APIs are less of a design choice and
more of a type of inheritance. Organizations inherit these
APIs as a type of dependency as they acquire, integrate, and
deploy commercial and open-source software packages.

CHAPTER 1 Understanding APIs 5

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Identifying API protocols
API protocols impact choices around architecture, testing tools,
and runtime security controls. Protocols are also sometimes
intertwined with API schema definitions, which you must account
for as part of API documentation. Chapter 2 covers API documen-
tation and schema.

For now, think of the API protocol as the means for how you com-
municate with an API, whereas the API schema defines what data
should look like in those communications or what functionality
is available.

Here are some of the most common API protocols you’re likely
to see:

 » Representational state transfer (REST): RESTful design
helps enable client-server architecture patterns and
separation of the interface from back-end services. One of
the trickier concepts with REST is that API endpoints can look
drastically different from one organization to the next
depending how they’re designed and coded. Elements of a
URL structure may represent functions or variables. HTTP
methods may also be used differently than expected.

 » GraphQL: GraphQL is a query language, but it can also be
used to manipulate data. Facebook created GraphQL to deal
with two problems. The first was to reduce excessive web
API calls. The second was to deal with fetching too much or
too little data that is sometimes inherent with REST API
design. The benefits to front-end performance are generat-
ing more interest in GraphQL, though REST APIs will still
likely remain in the picture.

 » Remote procedure call (RPC)-based protocols: You may
still see the terms JavaScript object notation (JSON)-RPC and
extensible Markup Language (XML)-RPC, where JSON and
XML denote the encoding format used in API requests.
Google created gRPC remote procedure call (gRPC), which has
gained in popularity for speedy microservice communica-
tion. Unlike REST and GraphQL though, you rarely see gRPC
as the protocol of choice for browser-based front ends.

6 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Simple object access protocol (SOAP): SOAP APIs are still
seen in some internal APIs and business applications.
However, SOAP API implementations are often viewed as too
heavyweight and have largely been supplanted by REST API
design.

Designing Modern Applications with APIs
APIs have significantly changed the way that development teams
create applications. Whether your organization is building,
acquiring, or integrating APIs, the impacts to front-end design,
business functionality, and data exchange are significant. APIs
are also prominent within microservices architecture (MSA) and
cloud-native design patterns. Continue reading the following
sections for more details.

Decoupling front ends and back ends
When most users and even practitioners think of an application,
they’re thinking of a front-end interface or graphical user inter-
face (GUI). In most application designs, front-end interfaces are
decoupled from back-end services and APIs so that any individual
component can be updated iteratively and more easily. Front-end
code can be script running in a web browser, or it may be native
mobile code such as a mobile app designed for Android and iOS.

Organizations often attempt to secure and harden the front-end
code that is installed on user devices, but this proposition can be
difficult given what’s in the realm of control of the organization.
For mobilized employee apps, this approach may still be techni-
cally feasible for bring your own device (BYOD) and corporate-
owned, personally enabled (COPE) scenarios. However, for mobile
apps destined for customers, patients, or citizens, an organization
has little control over end-user devices where client-side code
protections are often circumvented.

CHAPTER 1 Understanding APIs 7

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Considering impacts from
microservices architecture
In some cases, the terms microservices and APIs are used inter-
changeably. However, to help you better understand, keep in
mind the following words and definitions:

 » Microservice: It’s a service designed to do one thing and one
thing only. This design pattern contrasts with monolithic
design where a system or service is designed to do many
things. The idea is that a microservice brings easier-to-
understand code and looser coupling between services.

 » Microservices architecture (MSA): It’s an architecture
pattern where a system is composed of many interoperating
microservices. An MSA provides benefits like improved
design flexibility, improved continuous delivery, and faster
service and infrastructure startup.

 » Monoliths: Monoliths are designed to do many things, which
consequently can make them difficult to upgrade or
maintain. They remain in existence despite how they may
seem taboo and how industry focus has shifted to MSA. They
may be an organization’s preferred design pattern based on
pedigree or developer experience.

A microservice’s functionality doesn’t need to be exposed outside
of the microservice environment. If your organization wants to
expose microservice functionality, then an API is the way to do
it. Inner microservice communications may use a protocol such
as gRPC, whereas functionality may be exposed to users that are
external to the microservice environment via REST or GraphQL
APIs. It’s not uncommon for APIs to be mediated by API gateways.
Chapter 2 touches more on the topic of API mediation.

MSA brings increased operational complexity because of the high
number of distributed services that you must deploy and orches-
trate. Organizations usually have a mixture of both monoliths and
microservices. In practice, many architectures resemble some-
thing in between.

8 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Altering the API picture:
Cloud-native’s role
Cloud-native has a few meanings depending what IT circle you sit
in. The broadest definition is that a design or architecture exhibits
cloud traits and makes use of technologies that power cloud ser-
vice providers. Common cloud traits include web scale capacity and
elasticity, where the compute you need to run an application or
service is almost infinite, bound only by the available hardware in
a cloud provider’s data centers that is largely abstracted from you.

The following technologies enable cloud computing:

 » Virtualization: Virtualization is a way to abstract hardware
from the operating system using a hypervisor. You can run
many virtual machines on a given physical host, often
described in terms of density. By packing more virtual
machines on a given host, you can make better use of the
hardware and ensure it doesn’t sit idle. Virtual machines are
used readily to power applications and services, but virtual
machines must be lightweight and highly performant if
they’re to service MSAs.

 » Containerization: Containerization involves packaging
applications and their dependencies into containers to
further increase density by abstracting the operating system
from applications and services. Containers improve portabil-
ity and environment consistency. Containers are often used
as the unit of compute to power microservices within MSA.

Cloud-native maps to the world of APIs in a few ways, but the two
most common are as follows:

 » Organizations pair containerization and virtualization to limit
the blast radius in the event of compromised API code,
container runtimes, or hypervisors.

 » Entire infrastructures can be declared and operated via APIs,
for example, with container platforms like Kubernetes and
cloud service providers.

CHAPTER 2 Laying the Foundations for API Security 9

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Identifying problems with API
documentation and analysis

 » Understanding API security testing
methods

 » Mediating APIs to improve observability
and enforce policies

Laying the Foundations
for API Security

Traditional approaches to securing APIs are numerous,
including testing and mediation. This chapter examines
these approaches in greater detail.

Documenting APIs
API documentation serves a range of security and nonsecurity
purposes throughout the API life cycle. Documentation gives your
organization a couple of primary advantages:

 » It provides details on how to communicate with APIs, the
functionality they provide, and the data they exchange so
you can better understand your API attack surface.

 » It serves as input into other activities including design
reviews, security testing, operations, and protection.

Like all forms of documentation, teams inevitably neglect to doc-
ument APIs or new functionality as they iterate. This reality leads
to a type of environment drift, also referred to as API drift, that
leaves massive gaps in your API inventory and security posture.

10 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Document APIs that you build and use that data to feed an API
inventory or catalog. Include third-party APIs where adequate
documentation is provided by the supplier. Mitigate gaps in your
API inventory by continuously scanning environments and ana-
lyzing traffic to discover new API endpoints and functions.

The following sections touch on a couple more points your
organization needs to remember as it documents its APIs.

Steering clear of traditional
documentation approaches
Avoid approaching API documentation as a traditional documen-
tation exercise with the goal of producing lengthy text documents
or visual diagrams as artifacts. Written documents, slides, or
visual diagrams are sometimes required for compliance or as part
of design reviews.

Some organizations tend to carry over security from traditional
compliance and waterfall approaches. However, many IT orga-
nizations start to feel increased pressure as development teams
adopt agile methodologies and DevOps practices that often come
as part of a package deal with API development.

Traditional documentation can be useful for secure design reviews
and threat modeling. However, traditional forms of documenta-
tion are notoriously difficult to generate and maintain. API drift
can be worse in these cases, and API documentation likely won’t
reflect the reality of your production deployment even with extra
manpower allocated to documenting all changes.

Working with API schema definitions
The API schema definition formats are designed to make your life
easier. Schema can be defined and documented during API cre-
ation. The schema definitions are also reusable for testing, inte-
gration, publishing, and operations. Many design, mocking, and
development tools can autogenerate API schema definitions as
you integrate or code an API.

You can use these features to reduce documentation workload
and avoid headaches later. Open-source software packages that
include web APIs also commonly include the relevant API schema

CHAPTER 2 Laying the Foundations for API Security 11

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

definitions in the corresponding code repository (such as git) or
package manager (such as npm) you obtain them from.

Most commonly for REST APIs, these machine formats include
Swagger or OpenAPI specification (OAS). Depending on your API
design, development, or publishing tooling, other formats like
RAML or API Blueprint may be present. And if you’re exploring
GraphQL APIs, then also expect to work with GraphQL schema
definitions.

Testing APIs
A specific focus within shift-left API security practices is
 securing the build pipeline, which requires that teams get security
 tooling plugged into continuous integration/continuous delivery
(CI/CD) build pipelines and git-based developer workflows.
Securing build pipelines requires a range of security-testing
tools including dependency analyzers, static analyzers, dynamic
 analyzers, schema validators, fuzzers, and vulnerability scanners.
The type of security tooling that is needed varies based on what
artifacts are moving through the pipeline, what must be built, and
where must it be delivered.

The following sections examine the advantages and disadvan-
tages of security testing within build pipelines.

Utilizing application security
testing tools
Static application security testing (SAST) can be used to analyze orig-
inal source code for potential weaknesses and vulnerabilities. It’s
often run when code is committed to version control or during
build stages. Meanwhile, dynamic application security testing (DAST)
can be used to analyze a running application for exploitable con-
ditions. It’s often initiated prior to production delivery or used in
production continuously because the application must be running
on infrastructure.

SAST and DAST can uncover weaknesses and exploitable condi-
tions in your custom API code. However, these scanning methods
can’t uncover business logic flaws that attackers target and abuse.
Business logic — and how you design and code APIs — is unique

12 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to your organization. As a result, the code that represents your
business logic rarely follows well-defined patterns where SAST or
DAST signatures can be built accordingly.

Most tools don’t go deep in testing authentication or authori-
zation beyond cursory checks such as detecting weak forms of
authentication like basic and digest access, or the testing tool
may only analyze how credentials are input, passed, or stored.
Some DAST tools can check for privilege escalation weaknesses,
but doing so requires multiple runs of the tool against a given app
and its API. Unfortunately, many organizations push tight release
windows and time is at a premium.

DAST tools are notorious for running for extended periods of time
for complex applications. Budget time accordingly for build pipe-
line scans to complete or make scans nonblocking so as not to
hold up releases.

SAST and DAST have always had their shortcomings. The prob-
lem is worsened in the world of APIs. Yes, you should run them
against your custom application and API code, but acknowledge
that these scanners aren’t designed to detect all types of issues.
The importance of behavior analysis in runtime for APIs can’t be
stressed enough (refer to Chapter 4 for more details).

Using API schema validators
A form of static analysis, API schema validators are often pitched
as the DevOps-friendly solution for build pipeline security. The
pitch often goes like this: “Give us your schema definitions; we
can scan your APIs, make sure they’re conformant, and check for
vulnerabilities.”

However, you should be aware of a few issues that exist with the
schema validation approach:

 » Not everything needs to be defined in API schema. API
specification formats like OAS and Swagger don’t require
that you define all fields or functions in the API documenta-
tion. Developers commonly forget to document something
fully, particularly if they aren’t working within API design
tools like Postman.

CHAPTER 2 Laying the Foundations for API Security 13

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Many organizations are lackluster at documenting.
Humans are notoriously bad at documenting and especially
documenting everything fully. A lack of documentation isn’t a
problem specific to developers. OAS can help in that it’s
self-documenting, but it still requires manual effort. Some
tooling may also be better at generating the OAS definition
than others.

 » API drift happens as a matter of course. Deviations from
the original specification and what is running in production
are common. API drift parallels one of the biggest problems
that organizations run into with secure design review and
threat modeling processes. Sometimes what you intend to
build ends up looking much different than the real-world
product.

Any AST or schema analysis tooling you select should be inte-
grated and automated to serve the pipeline. Tools should work
within established git workflow and CI/CD processes. Scanning
manually, finding issues, and spitting out a report aren’t enough.
Such an approach won’t work for agile methodologies or DevOps
practices that most organizations are embracing.

Schema validation and enforcement is the old paradigm of posi-
tive security in new clothes. Instead of security teams having to
create rules or signatures, the burden is shifted to development
teams. Schema validation can only identify some exploitable con-
ditions and misconfigurations. Schema analysis can’t identify
business logic flaws.

Mediating 101: APIs and the Relevant
Mechanisms

Although it’s possible to directly expose an API via a web or appli-
cation server, this practice is less common in typical enterprise
architectures. API mediation can be achieved through several
other mechanisms including network load balancers, application
delivery controllers, Kubernetes ingress controllers, sidecar prox-
ies, and service mesh ingresses.

Understanding that you can mediate and observe API traffic at
multiple points in an enterprise architecture is what you need to
know here. Having a basic idea of the various mediation points

14 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

is critical to API security so you’re seeing all traffic, are able to
enforce as appropriate, and remediate quickly. The actual selec-
tion of a particular mediation mechanism or the point in an archi-
tecture where you’d elect to proxy API traffic is beyond the scope
of this book.

These sections examine in plain English what you need to know
about mediation and APIs.

Deploying proxies — reverse
and forward
Design patterns like API facade and front end for back ends
involve putting a proxying mediation layer in front of APIs. API
mediation is commonly achieved by deploying proxies of one (or
both) of the following types:

 » Reverse proxy: A reverse proxy analyzes and acts on traffic
that is inbound to an API or service. For example, you may
want to proxy inbound calls to monitor API usage or
consumption.

 » Forward proxy: A forward proxy analyzes and acts on traffic
that is outbound from an API or service. For example, you
may want to proxy outbound calls to an API dependency that
is delivered as a cloud-hosted software-as-a-service (SaaS).

Business drivers and use cases will drive adoption of both proxy
deployment types. Mediation provides a wide range of benefits
including improved visibility, accelerated delivery, increased
operational flexibility, and improved enforcement capabilities,
particularly when it comes to API access control. Expect to see
both forward and reverse proxies in any given architecture. Prox-
ies are an area of API practice that quickly get into the realm of
infrastructure and operations, network engineering, and enter-
prise architecture rather than application development.

Functioning as API mediation points
In most enterprise architectures, you’ll find a mix of proxying
mechanisms that mediate API requests and responses:

 » Network load balancers (NLB): Network load balancers
(NLB) may be physical hardware or software-defined, and

CHAPTER 2 Laying the Foundations for API Security 15

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

they’re responsible for routing requests dynamically
between servers and services to balance network load.

 » Application delivery controllers (ADC): Application delivery
controllers (ADC) are like their NLB counterparts, though they
typically include more functionality focused on application-
specific routing, load-balancing, and caching. In some cases,
ADC and NLB are interchangeable and can just be a matter
of vendor language.

 » API gateways: API gateways are designed specifically for
mediating API traffic. They can also help with message
translation and bridging between different protocols for
inner and outer architecture.

 » API management (APIM): API management (APIM) suites
provide full life cycle capabilities on top of API gateways
alone. They typically enable an organization to unify policies
across gateways and API endpoints, provide rolled-up
monitoring, and enable developer or partner self-service.
APIM still relies on API gateways as a mediating proxy
mechanism to enable their functionality and enforce policies.

If an organization is rapidly embracing MSA, more than likely the
organization has ingress controllers for Kubernetes and service
meshes. Such ingresses are a mashup of API gateways and NLBs,
and they may support multiple protocols depending on the design
of the microservices. Proxies may also be deployed more local to
a given workload that powers a microservice or API. Such proxies
are typically referred to as sidecar proxies. Sidecar proxies function
as a type of loopback proxy, where all traffic flowing into or out of
a workload must go through the sidecar proxy.

Enforcing policy with API management
APIM offerings usually provide a set of capabilities to satisfy some
use cases. Those capabilities commonly include the following:

 » Network security: Like NLBs or ADCs, network connectivity
can be restricted to APIs in an API gateway. Commonly this
includes IP address allow and deny lists to restrict which
origin IP addresses can communicate to a given API, rate
limits to restrict how frequently requests can be made, and
transport encryption with TLS to provide confidentiality and
integrity of messages in transit.

16 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Authentication and authorization: Organizations often
enforce access control at API gateways so that API calls are
authenticated and authorized. Common protocols include
OIDC for authentication and OAuth2 for authorization.
Token translation is usually offered as well, such as where
an API implementation requires integration with older
protocols like security assertion markup language (SAML).

 » Basic threat protection: By design, the mediation
 mechanisms already offer message filtering and protocol
translation. Many APIM offerings provide basic rules to
block malicious character sets commonly used in injection
attacks. The other threat protection capability includes
restricting incoming API requests based on API schema
definitions or manual configuration. Restrictions can be
placed on parameter lengths, parameter values, array sizes,
and more.

Enable APIM security controls when possible if doing so doesn’t
break API integrations with other systems. These settings can
mitigate some types of API attacks, but they won’t protect you
from most forms of API abuse and business logic attacks.

CHAPTER 3 Getting the Lowdown on API Attacks 17

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Differentiating between API attacks
and application attacks

 » Looking at the OWASP API Security
Top 10

 » Identifying patterns of automated
attacks

Getting the Lowdown
on API Attacks

This chapter clarifies in plain English how API attacks differ
from application attacks. You also can read more about the
OWASP API Security Top 10, which is a good starting point

for understanding common API flaws. This chapter also covers
automated attack patterns like brute forcing, credential stuffing,
and scraping that almost always target APIs specifically.

Understanding How API Attacks Differ
from Application Attacks

API attack patterns vary from what practitioners are used to
within the network security and application security domains.
Attacks may borrow from both domains, or more commonly,
they’re unique to API use cases and business logic specifically.

Attackers exploit misconfigurations in infrastructure controls,
vulnerabilities in code, or some combination of the two. Leav-
ing security to a development team was already a poor strategy,
and some shift-left approaches and misguided DevOps practices
have pushed responsibility too heavily onto development teams.

18 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Developers may lack expertise in infrastructure and security con-
cepts, which inevitably results in gaps in API security.

Attackers use your front-end applications to connect to your
back-end APIs and to help decipher your business logic. Attackers
also relish the fact that modern applications are highly intercon-
nected with many first-party and third-party APIs, any one of
which might be exploitable.

The front-end application is only a
means to an end
Security teams sometimes attempt to secure APIs by protecting
endpoints or hardening client applications. For some API con-
sumption scenarios, you simply can’t secure the endpoint or trust
that client code won’t be tampered with. This reality hits espe-
cially hard for deployments where customers call external APIs,
public APIs, and open APIs from unsecured networks such as the
Internet.

Attackers regularly reverse-engineer client-side code or front-
end code with tools that unpack, decompile, or disassemble appli-
cation binaries. Attackers also make use of intercepting proxy
tools such as Burp Suite or OWASP Zed Attack Proxy. These are
the same proxying tools in use for general application trouble-
shooting and security assessment work. In the hands of a trained
professional as well as an attacker, the tools are incredibly pow-
erful. Be extra careful; always presume an endpoint is compro-
mised along with the client-side code that runs on it. Back-end
services (APIs) and the data they provide are the most valuable
targets to attackers.

APIs underpin digital supply chains
Your organization’s API ecosystem is more than just the APIs it
builds. API integrations and API dependencies in acquired appli-
cations or online services round out any organization’s portfolio.
Collectively, all of these APIs form an expansive digital supply
chain and increase the attack surface for organizations. The mix-
ture of first-party and third-party APIs and infrastructure com-
plicates what security controls are available to you, let alone what
code may be visible.

CHAPTER 3 Getting the Lowdown on API Attacks 19

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Attackers know this reality of distributed architectures and sup-
plier integrations, and they often target the weakest link. In fact,
attackers commonly exploit a weakness in an API as an initial
attack vector and then pivot to other networks, servers, work-
loads, applications, and APIs. These multistep attack sequences
often evade traditional security controls. The realities of API eco-
systems further emphasize the need for runtime behavior analy-
sis to detect novel exploits. Chapter 4 dives deeper into behavior
analysis and runtime protection.

Taking a Closer Look at the OWASP API
Security Top 10

The Open Web Application Security Project (OWASP) has grown
in popularity over the years, and the Application Security Top 10
is frequently cited in the security industry. In 2019, OWASP pub-
lished the API Security Top 10 to describe the ten most common
API flaws. The list should be your starting point for understand-
ing common weaknesses and vulnerabilities seen in APIs. Fur-
thermore, this list is useful as a training and awareness aid, and
it can also serves as a lightweight taxonomy for classifying issues
seen in APIs.

The sphere of concern over APIs shouldn’t begin and end with
the OWASP API Security Top 10. Attackers chain together exploits
of flaws described in the OWASP API Security Top 10. They also
employ automation to increase their chances of success and cause
greater damage. For example, excessive data exposure and broken
authentication leave an API susceptible to automated attacks such
as enumeration and scraping. APIs designed in such a way are
sometimes referred to as leaky APIs.

These sections discuss the OWASP API Security Top 10 sequen-
tially because there’s no easy way to group the flaws. Some entries
like authentication, authorization, and injection flaws can seem
redundant to the OWASP Application Security Top 10, but API
context adds uniqueness. Other entries like improper assets man-
agement or insufficient logging and monitoring are fundamental
to all systems engineering work. However, the problems become
more pronounced with APIs because of rapid development cycles,
undocumented API changes, and ongoing integration work.

20 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API1:2019 Broken Object Level
Authorization
Object level authorization is an access control mechanism used to
validate an API caller’s ability to access a given object. Even if
an application implements proper authorization checks in infra-
structure, developers often forget to apply these checks before
allowing access.

Attackers easily exploit API endpoints that are vulnerable to bro-
ken object level authorization (BOLA) by manipulating the ID of an
object that is sent within an API request. These vulnerabilities are
extremely common in API-based applications because the server
component often doesn’t fully track the client’s state. Instead, the
server component relies on parameters like object IDs sent from
the client to decide which objects can be accessed.

Every API endpoint that receives an ID of an object and performs
any type of action on the object should implement object level
authorization checks. These checks should be made continuously
throughout a given session to validate that the authenticated user
has access to perform the requested action on a requested object.

Failure to enforce authorization at the object level can lead to
data exfiltration as well as unauthorized viewing, modification,
or destruction of data. BOLA can also lead to full account takeover;
for example, attackers can compromise a password reset flow and
reset credentials of an account for which they aren’t authorized.

API2:2019 Broken User Authentication
Authentication mechanisms are easy targets for attackers, par-
ticularly if the authentication mechanisms are fully exposed or
public. Prompting users or machines for authentication material
may also not be possible in some API use cases. These two points
make the authentication component potentially vulnerable to
many exploits.

Broken authentication in APIs originates from the following:

 » Lack of protection mechanisms: The API endpoint lacks an
authentication mechanism. This is a common occurrence
within internal networks or middleware.

CHAPTER 3 Getting the Lowdown on API Attacks 21

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Improper or misconfigured authentication: The mecha-
nism is used or implemented without considering the attack
vectors, or the mechanism isn’t appropriate for the use case.
For example, an authentication mechanism designed for IoT
devices typically isn’t the right choice for a web application
like an ecommerce site.

This OWASP entry is a catch-all for all types of authentication
issues including weak password complexity, inadequate account
lockout thresholds, authentication material exposed in URLs,
authentication tokens with insufficient entropy, use of API keys as
the only authentication material, and lack of two-factor authen-
tication (2FA).

Attackers who are able to successfully exploit vulnerabilities in
authentication mechanisms can take over user accounts, gain
unauthorized access to data, make unauthorized transactions
as other users, and abuse implicitly trusted connections to pivot
attacks to other systems.

API3:2019 Excessive Data Exposure
Teams sometimes design applications such that back-end APIs
provide all the data that might be necessary for a given func-
tion and then depend on client-side code to filter appropriately.
Because APIs can be used as a means of data exchange for many
types of API consumers, back-end engineers may implement APIs
in a generic way without thinking about the sensitivity or privacy
of data. Traditional security scanning and runtime detection tools
can’t differentiate between legitimate data returned from the API
and sensitive data that shouldn’t be returned. This level of analy-
sis requires a deep understanding of the application design and
API context.

Exploitation of excessive data exposure weaknesses is simple.
Attackers sniff the API traffic generated by their interface, a cli-
ent application running on a device such as a laptop or smart-
phone. They make use of the same intercepting proxy tools used
by security practitioners to expose the network communications
between the API client (the front-end code) and back-end APIs.
After attackers expose traffic, they can analyze the API responses
and look for data that is returned to the user but typically not dis-
played in the client interface.

22 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API4:2019 Lack of Resources &
Rate Limiting
API requests consume back-end resources such as network, CPU,
memory, and storage. APIs don’t always impose restrictions on
the size or number of resources that can be requested by the cli-
ent or user. Lack of rate and resource limiting doesn’t just poten-
tially impact performance of back-end compute though. Lack of
limiting also opens the door to many types of attacks including
Denial of Service (DoS), brute-forcing, enumeration, and creden-
tial stuffing.

Here is a closer look at how attackers exploit APIs that lack limits:

 » Lack of resource limit: Attackers exploit lack of resource
limiting by crafting a single API call that can overwhelm an
application, impacting the application’s performance and
responsiveness or causing it to become unresponsive. This
type of attack is sometimes referred to as an application-level
DoS. Lack of resource limits may leave the system, applica-
tion, or API susceptible to authentication attacks and data
exfiltration attacks.

 » Lack of rate limit: Attackers exploit the lack of rate limiting
by crafting and submitting high volumes of API requests to
overwhelm system resources, brute force login credentials,
quickly enumerate through large data sets, or exfiltrate large
amounts of data.

API5:2019 Broken Function
Level Authorization
Broken function level authorization (BFLA) shares some similarity to
BOLA, though the target with BFLA is API functions as opposed to
objects that APIs interact with as in the case of BOLA. Attackers
attempt to exploit both BOLA and BFLA when targeting APIs in
order to escalate privileges horizontally or vertically.

Attackers discover BFLA flaws because API calls are structured and
predictable. Finding vulnerable API endpoints is possible in the
absence of API documentation or schema definitions by reverse
engineering client-side code and intercepting application traffic.
Some API endpoints might also be exposed to regular, nonprivi-
leged users making BFLA flaws easier for attackers to discover.

CHAPTER 3 Getting the Lowdown on API Attacks 23

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Attackers exploit BFLA flaws by sending legitimate API requests
to an API endpoint that they shouldn’t have access to, or by inter-
cepting and manipulating API requests originating from client
applications. For example, attackers may change an HTTP method
from GET to PUT. Alternatively, attackers may also alter a query
parameter or message body variable such as changing the string
“users” to “admins.” Attackers exploit BFLA flaws to gain access
to unauthorized resources, take over other accounts, modify
accounts, or escalate privileges.

API6:2019 Mass Assignment
Modern application frameworks encourage developers to use
functions that automatically bind input from the client into
code variables and internal objects. The frameworks do this to
help simplify and speed up development within the framework.
Attackers can use this side effect of frameworks to their advan-
tage by updating or overwriting properties of sensitive objects
that developers never intended to expose. Mass assignment vul-
nerabilities are also sometimes referred to as autobinding or object
injection vulnerabilities.

Exploitation of mass assignment vulnerabilities in APIs requires
an understanding of the application’s business logic, objects rela-
tions, and the API structure. APIs expose their underlying imple-
mentation along with property names by design. Attackers also
gain further understanding by reverse engineering client-side
code, reading API documentation, probing the API to guess object
properties, exploring other API endpoints, or by providing addi-
tional object properties in request payloads to see how the API
responds.

An API endpoint is vulnerable if it automatically converts client-
provided data into internal object properties without considering
the sensitivity and the exposure level of these properties. Binding
client provided data like JSON attribute-values pairs to data mod-
els without proper filtering of properties based on an allowlist
usually leads to mass assignment vulnerability.

Attackers exploiting mass assignment vulnerabilities can update
object properties that they shouldn’t have access to, allowing
them to escalate privileges, tamper with data, and bypass security
controls.

24 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API7:2019 Security Misconfiguration
Security misconfigurations include insecure default configu-
rations, incomplete configurations, open cloud storage, mis-
configured HTTP headers, unnecessary HTTP methods, overly
permissive cross-origin resource sharing (CORS) policies, and
verbose error messages.

Attackers exploit security misconfigurations to gain knowledge
of the application and API components during reconnaissance
phases where attackers passively or stealthily gather information
about a target or victim. Detailed errors such as stack trace errors
can expose sensitive user data and system details that aid attack-
ers during their reconnaissance phase to find exploitable tech-
nology including outdated or misconfigured web and application
servers. Attackers also exploit misconfigurations to pivot their
attacks, such as bypassing authentication due to misconfigured
access control mechanisms.

Automated security scanners are available to detect common
misconfigurations like unnecessary or legacy services. Where
you detect these issues in a given technology stack varies greatly
though. Vulnerability scanners may only scan a running server
for known vulnerabilities and misconfigurations in published
software, usually in the form of CVE IDs. However, this type of
detection doesn’t provide a complete picture because misconfigu-
rations can exist in underlying code, in third-party dependencies,
or other system integrations.

Organizations often employ a barrage of security scanners in
build pipelines to try to catch as many issues as possible prior
to production deployment. Cases where security misconfiguration
is the result of something simple like a missing patch are often
minimal. Most misconfigurations that lead to exploitable APIs are
far stealthier and obscured by complex architectures.

API8:2019 Injection
Injection flaws are common in the web application space, and they
also carry over to web APIs. Structured Query Language (SQL)
injection, or SQLi, is one of the most well-known types of injec-
tion flaws. Other varieties of injection flaws impact a range of
interpreters and parsers beyond just SQL including Lightweight
Directory Access Protocol (LDAP), NoSQL, operating system (OS)

CHAPTER 3 Getting the Lowdown on API Attacks 25

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

commands, Extensible Markup Language (XML), and object-
relational mapping (ORM).

Attackers exploit injection flaws by sending malicious data to an
API that is in turn processed by an interpreter or parsed by the
application server and passed to some integrated service, such as
a database management system (DBMS) or a database as a service
(DBaaS) in the case of SQLi. The interpreter or parser is essen-
tially tricked into executing the unintended commands because
they either lack the filtering directly or expect it to be filtered by
other server-side code.

Successful exploitation of an injection flaw by attackers can lead
to a wide range of impacts including information disclosure, data
loss, and denial of service (DoS). In many cases, successful injec-
tion attacks expose large sets of unauthorized sensitive data.
Attackers may also be able to create new functionality, perform
remote code execution, or bypass authentication and authoriza-
tion mechanisms altogether.

API9:2019 Improper Assets
Management
Maintaining a complete, accurate API inventory is critical to
understanding potential exposure and risk. An outdated or
incomplete inventory results in unknown gaps in the API attack
surface and makes identifying older versions of APIs that should
be decommissioned more difficult. Similarly, inaccurate API doc-
umentation results in risks like unknown exposure of sensitive
data and makes identifying vulnerabilities that need to be reme-
diated difficult.

Unknown APIs, referred to as shadow APIs, and forgotten APIs,
referred to as zombie APIs, typically aren’t monitored or protected
by security tools. Known API endpoints may also have unknown
or undocumented functionality, which are referred to as shadow
parameters. As a result, these APIs and the infrastructures that
serve them are often unpatched and vulnerable to attacks. Attack-
ers may gain unauthorized access to sensitive data, or even gain
full server access through old, unpatched, or vulnerable versions
of APIs.

26 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API10:2019 Insufficient Logging &
Monitoring
Insufficient logging and monitoring of APIs enables attackers to
perform reconnaissance, abuse business logic, compromise sys-
tems, maintain persistence, and move laterally across environ-
ments without being detected. The longer attackers dwell or are
present in an environment, the higher the likelihood the attack
will result in a breach, brand or reputation damage, or some other
negative impact.

Without visibility over ongoing malicious activities, attackers
have ample time to perform reconnaissance, pivot to other sys-
tems, and tamper with, extract or, destroy data.

Recognizing Automated Attack Patterns
Attackers frequently create or use custom code, python scripts,
command line scripts, pre-built bots, and intercepting proxies to
perpetuate and automate API attacks. New attack patterns emerge
as attackers abuse the unique business logic that organizations
build into their APIs. These sections cover two automated attack
patterns that all industries face: credential stuffing and scraping.

Brute forcing, credential stuffing, and
account takeover, oh my!
Brute force attacks are where attackers enumerate through alpha-
numeric sequences to find working username and password com-
binations that provide authenticated context. Brute force attacks
often combine each username in a one (username)-to-many
(password) attack. Attackers may also attempt to brute force
usernames, depending on how much data they’re starting with.

Credential stuffing relies on lists of compromised username/
password combinations and the common bad habit of users
implementing the same credentials across multiple services.

Where brute forcing and credential stuffing converge is the end
goal of account takeover (ATO). ATO is when attackers have obtained
working credentials that provide them authenticated context in a
system and its APIs. Once authenticated, attackers have access
to sensitive data or functionality and may try to further escalate
privileges.

CHAPTER 3 Getting the Lowdown on API Attacks 27

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Credential stuffing and brute force attacks can be mitigated by
implementing policies that lock an account after multiple login
attempts. However, setting aggressive lockout thresholds can
impact user experience. As a compromise, organizations some-
times implement a lax lockout policy, such as locking an account
after ten consecutive, failed login attempts within an hour. The
failed attempt counter resets after 60 minutes.

However, attackers take advantage of these relaxed thresholds
by backing off their login requests and pausing attempts until
thresholds and counters reset. This attack technique is another
example of why runtime behavior analysis is necessary to detect
and prevent API abuse.

The plague of scraping
Public APIs carry inherent risk because the design leans toward
allowing anonymous access, and traditional access control mech-
anisms are a luxury. It’s not possible to enforce strong authenti-
cation and authorization without registering users or employing
additional authentication factors such as 2FA. Such an approach
can negatively impact user experience and service adoption.

Attackers take advantage of these exposed APIs with relaxed
access controls. APIs may also expose too much data or lack rate
limits, which are two common flaws described in the OWASP API
Security Top 10 (refer to the section, “Taking a Closer Look at the
OWASP API Security Top 10,” earlier in this chapter). When these

STOPPING CREDENTIAL STUFFING
ATTACKS
Finastra, a leading FinTech platform provider, frequently defends
against credential stuffing attacks, with hackers automating account
ID info in an effort to succeed at account takeover. The Finastra team
has deployed API security from Salt Security to automatically detect
and block these attacks, which otherwise easily pass through the com-
pany’s WAFs and API gateways.

28 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

design flaws all apply to a given API endpoint, you end up with a
leaky API that may inadvertently expose sensitive or private data.
It’s trivial for attackers to enumerate API endpoints and scrape
data en masse using even basic scripts.

Attackers collect data at scale and in large volumes by utilizing
the same data analytics tools that practitioners use to aggregate
and correlate data to extract meaningful patterns. Depending on
the information within the collected dataset, attackers may use
scraped data to perpetuate fraud, social engineer individuals, tar-
get users with phishing attacks, or brute force accounts.

CHAPTER 4 Securing APIs 29

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Acknowledging the importance of
architecture

 » Continuously discovering APIs

 » Protecting APIs in runtime

 » Remediating APIs

 » Examining API security best practices

Securing APIs

Traditional approaches can be beneficial to API observability
and monitoring, and they also have usefulness for some
aspects of security. However, a new approach is needed to

protect APIs throughout their life cycles.

This chapter covers the importance of architecture in API secu-
rity, and why a platform approach is needed to avoid the pitfalls of
one-off tools and controls. I also describe the groupings of capa-
bilities that are most critical for securing APIs throughout their
life cycles: continuous discovery, protection, and remediation.
This chapter also includes some API security best practices for all
organizations to consider.

Recognizing Why Architecture Is
Essential

The resulting gaps in API security posture that are left with tradi-
tional approaches has created the need for purpose-built API secu-
rity. API security can’t be addressed by a collection of splintered
tools, stitched together by engineering teams, and operated hap-
hazardly. This approach results in operational headaches, scaling
issues, and increased likelihood of security incident. The follow-
ing sections explain the importance of the architecture of any API
security solution and core traits you should look for in a solution.

30 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Focusing on architecture
Any API security tooling you consider for your organization
should be built as a platform of capabilities. API security strategy
demands a full life cycle approach because security issues, vul-
nerabilities, logic flaws, and misconfigurations arise at different
stages of API design, development, delivery, and operation.

API security tooling should leverage Big Data to collect and store
large amounts of API telemetry, correlate API traffic, provide con-
text, and power fast attack detection and response. The tooling
should also use AI/ML to continuously extract useful, actionable
signals for IT teams. Time-in-market is another key considera-
tion because algorithms improve over time through training and
data sets are enriched by the network effect, with more users and
API calls.

Identifying core traits in an API
security platform
Any API security tooling you consider should be built with auto-
mation and cloud-scale capacity in mind. Realistically, that infers
a cloud-native design, making use of cloud-born technologies
such as auto-scaling infrastructure components, cloud storage,
and cloud analytics. This approach enables support for all your
organization’s environments as API adoption increases.

IN THEIR OWN WORDS
“Architecture is essential to effective API security. Only platforms with
the ability to capture and analyze all your API traffic can create the
context needed for full protection. You need a rich data engine and
time-proven AI and ML algorithms to identify APIs and their exposed
data, find and stop attackers, and distill the remediation details
needed to harden vulnerable APIs.”

— Curtis Simpson, CISO, Armis

CHAPTER 4 Securing APIs 31

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Key architecture attributes that API security tooling should exhibit
include the following:

 » Environment agnostic: API security tooling needs to
support modern and legacy infrastructures regardless of
where they’re hosted. The tooling should also be able to
integrate with network elements like load balancers, API
gateways, and web application firewalls (WAFs).

 » Independence from additional server agents and
proxies: API security tooling shouldn’t require additional
server agents or network proxies. The tooling should avoid
the use of client-side code to stop attacks including
CAPTCHAs or JavaScript in the traffic stream. These
approaches create issues with front-end performance and
are ineffective in direct API communication.

 » Cloud-based storage and analytics: API security tooling
should make use of cloud-based storage and data analytics,
often referred to as Big Data. This approach is the only way
to retain enough data to inform baselines of API behaviors
and consumption patterns, drive analysis engines, and
identify potential data loss, privacy impact, or other security
incident.

 » AI/ML based analysis: API security tooling should use AI/ML
to analyze all the data and telemetry that are collected and
produce meaningful security signals. Machine-assisted
approaches are essential for powering detection and
enforcement capabilities, such as determining where best to
mitigate an API issue or what control is most appropriate.
Machine-assisted analysis also helps reduce high false
positive rates that are common in traditional approaches.

Ensure that API security tooling is designed to work in environ-
ments with encrypted transport. Some approaches suffer from
reduced visibility with traffic inspection.

32 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Evolving Your Catalog: A Continuous
Discovery of APIs

Your API catalog will continuously evolve due to API develop-
ment, API integration, and third-party API dependencies. DevOps
practices also complicate matters with increased release velocity.
You must continuously identify API endpoints and parameters,
classify sensitive data they expose, and catalog your APIs to drive
other API security activities.

The API catalog that exists in your organization’s API manage-
ment platform, if it uses one, is likely incomplete. Configuration
management and asset management databases are either too
stale or too far removed from API context.

The following sections describe technological capabilities to seek
for discovery and cataloging. And that discovery capability should
also incorporate data classification to highlight what types of
sensitive or private data are exposed.

Considering discovery capabilities
you need
Due to the number of changes occurring normally in an organiza-
tion and the pace of evolution, API discovery must be continuous.
A point-in-time snapshot will be instantly stale the moment you
can start coordinating activities or implementing controls. Here
are the API discovery features you need:

 » Span all environments and API types. API security tooling
should automatically collect data and metadata about APIs
across environment types, including third-party API con-
sumption. Discovery should be based on analysis of actual
traffic and not just schema definitions to account for
deviations between intended design and production
deployments.

 » Identify shadow APIs. API security tooling should identify
shadow APIs, which are unknown or undocumented APIs.
This detection should include shadow API endpoints, API
functions, and API parameters. These unknown API
resources that have flown under the radar of operations and
security teams result in additional attack vectors.

CHAPTER 4 Securing APIs 33

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Identify zombie APIs. API security tooling should identify
zombie APIs, which are outdated or deprecated APIs. Old
versions and old code of APIs often linger when building or
operating APIs at scale. Zombie endpoints can contain buggy
or vulnerable code, may expose excessive data or functional-
ity, may no longer be monitored, and may lack other
production mitigations.

Many scanning tools focus on IP address and host information,
which alone are insufficient for API security. Effective API dis-
covery and cataloging must include all appropriate API metadata
such as API endpoints and API functions, paths, and message
body structures.

Incorporating data classification
APIs are used frequently to exchange data that may be sensitive.
As a result, you want any API security tooling to identify any sen-
sitive data types in API parameters and payloads as well as tag API
endpoints appropriately so you’re aware of potential exposures.

A range of personally identifiable information (PII) and other
data types are subject to regulation. As examples, sensitive data
includes protected health information (PHI) as defined by the
Health Insurance Portability and Accountability Act (HIPAA), and
private data includes information types defined by General Data
Protection Regulation (GDPR).

Failing to identify and protect sensitive data can result in penal-
ties from regulatory bodies, severe brand damage, or loss of cus-
tomers. API discovery can be useful for audits and prioritizing API
security activities.

Protecting APIs Continuously
Chapter 2 examines how mediating technologies like API gate-
ways can provide elements of API runtime protection. Used alone
though, these mediation mechanisms leave gaps in your API
security posture. Traditional runtime security approaches either
aren’t designed for the world of APIs, or they fail to provide
full API context. You need to seek API security capabilities that
can detect API attacks early and provide protection that adjusts
dynamically based on your changing API attack surface.

34 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A common threat protection approach is to front-end API medi-
ation points with additional proxies such as next-generation
firewalls (NGFW) or WAFs. Such an approach adds latency and
provides minimal to no added protection beyond the message
inspection capabilities of most API gateways. Corresponding rules
aren’t designed for unique API business logic, and these mecha-
nisms can’t provide full context.

The following sections detail what detection and protection capa-
bilities you should seek. Consider both sides of this coin as you
select and implement any API protection.

Identifying the detection
capabilities you need
You need capabilities that can identify API attacks quickly and
early. WAFs and API gateways focus on transactions in isolation
rather than viewing the whole picture of a complete API sequence
to provide full context. API gateways, including those that exist as
components of API management and integration platforms, are
primarily API mediators and access control enforcers that may
already be overloaded.

Schema-dependent API security tools fail at detecting certain
types of API attacks, such as broken object level authorization
(BOLA) flaws. Limitations are inherent when restricting security
protection to API schema definitions at the expense of also exam-
ining traffic in runtime.

Some organizations may attempt to repurpose intrusion detection
systems (IDS), intrusion prevention systems (IPS), and NGFW for
API security, but these systems are even less suited for the task of
API attack detection because they sacrifice any application layer
or API focus for broad, multiprotocol attack detection. Detection
capabilities you need include the following:

 » Attacker correlation: API security tooling should aggregate
and correlate API traffic and associate it to attacker campaigns
where applicable. Tooling should correlate attack behavior per
source IP address, per user ID, and per session ID.

 » Behavior analysis and anomaly detection: API security
tooling should programmatically parse API business logic
and behaviors to assess impacts to an organization’s API

CHAPTER 4 Securing APIs 35

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

security posture. Tooling should exhibit traits of user and
entity behavior analytics (UEBA) to detect a wide range of API
abuses and automated attacks where API consumption
patterns deviate from baselines.

 » Early attacker identification: API security tooling should
continuously detect API attacks early and quickly. Attackers
go through an early reconnaissance phase as they passively
and stealthily probe API targets. These passive analysis
techniques evade most detections because they typically
appear as legitimate traffic. API security tooling should
detect subtle variations in API consumption patterns that
result from automation scripts and reverse engineering tools
employed by attackers.

Focusing on the protection
capabilities you need
Expanding on API threat protection capabilities beyond what is
afforded by traditional approaches is critical. Testing or detect-
ing issues in APIs isn’t enough. You need a more comprehensive
approach if you desire to stop API attacks before attackers can
exfiltrate data or do damage to your organization. Here are the
protection capabilities you need:

 » Stop attacks that exploit OWASP API Security Top 10
flaws. API security tooling should stop attackers that
attempt to exploit issues defined in the OWASP API Security
Top 10 (refer to Chapter 3 for more about this list). The list
includes exploits of BOLA flaws, BFLA flaws, broken authenti-
cation, excessive data exposure, lack of resource or rate
limiting, security misconfigurations, and injection flaws.

 » Block malicious requests while learning API logic. API
security tooling should block or mitigate API attacks while
learning the organization’s unique business logic. Some API
attacks can be detected and stopped regardless of how an
organization designs its APIs, including injection attacks and
excessive API consumption.

 » Stop credential stuffing and brute forcing attacks. API
security tooling should stop the automated attacks (see
Chapter 3) where the end goal for an attacker is account
takeover (ATO). ATO is a risk for any organization that

36 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

exposes an API where authentication and authorization are
required. Even in cases where additional authentication
factors are used, attackers combine techniques to overcome
strong access controls.

 » Stop application-layer denial of service (DoS) attacks. API
security tooling should stop application-layer DoS attacks.
DoS and distributed DoS (DDoS) are often viewed from the
lens of excessive traffic or request rates, or volumetric
attacks. The more nefarious and stealthy form of DoS is
application-layer DoS, or layer 7 DoS. Application-layer DoS is
more difficult to stop because of application and API
uniqueness. Ensure that the security tooling doesn’t stop at
layer 3 and 4 DoS. Tooling should also cover layer 7 DoS and
for APIs specifically.

Traditional rate limiting and message filtering mechanisms in
API gateways or WAFs are too static, too operationally complex,
or not well-maintained by the vendor. Use static limits if you have
limited API consumption, but seek dynamic limiting mechanisms
if your API consumers are numerous or traffic patterns are less
predictable.

Remediating APIs: Enhancing Capabilities
and Streamlining Workflow

DevOps and DevSecOps practices reinforce the notion of feed-
back loops. You want your tooling to be integrated and automated
in such a way that workflow is seamless. Workflow is typically
centered around git-based version control systems (VCS) and CI/
CD pipelines. Security and nonsecurity teams should be able to
quickly obtain the information they need to act on and resolve
issues.

Remediation workflow should be minimally disruptive to normal
workstreams and business activity. In practice, you can achieve
this by getting as much information and resolution capability into
the toolchains that are used as part of normal work.

The following sections call out remediation capabilities you need
and why adapting to response workflows is necessary.

CHAPTER 4 Securing APIs 37

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Naming remediation capabilities
you need
Organizations frequently wrestle with common vulnerabili-
ties and exposures (CVE) IDs, often generated from vulnerabil-
ity scanning. However, design flaws, software weaknesses, and
business logic flaws don’t map neatly to CVE IDs. With respect to
API security, you need to seek remediation capabilities that can
check for a wide spectrum of API-related flaws, vulnerabilities,
and infrastructure misconfigurations. These remediation capa-
bilities should work continuously for the full life cycle of APIs in
development, build, and runtime phases.

A security fix may not always be code level, because it may not be
technically possible to fix a problem in code, it may not be feasible
to produce a code fix in a timely manner, or it’s more practical to
mitigate through other infrastructure components. Here are API
remediation capabilities you need:

 » API vulnerability and weakness identification: API security
tooling should use a combination of techniques to assess
the security of all APIs in the organization. Tooling should
passively analyze API traffic that flows through numerous
points of enterprise architecture on- and off-premises, and it
should analyze API schema definitions when available to
identify areas of API weakness that should be remediated by
development teams, operations teams, or both.

 » Remediation guidance tailored to personas: API security
tooling should provide remediation guidance focused on
code-level fixes for development perspectives as well as
infrastructure configurations for operations perspectives.
Issues should be mapped to the OWASP API Security Top 10
(refer to Chapter 3) where appropriate, but technical details
shouldn’t be written only for security audiences.

 » Integration with defect tracking systems: API security
tooling should integrate with external defect tracking
systems to support pre-existing security and development
workflows for remediation. Defect tracking may be handled
in external DevOps suites, ITSM, or vulnerability manage-
ment (VM) platforms depending on the organization’s IT and
security programs.

38 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Code repository and pipeline integration: API security
tooling should provide mechanisms to integrate with
development, build, and release systems. Integration may be
through VCS integration to statically analyze API code or
schema definitions. Integration may also be through CI/CD
integration to dynamically analyze APIs in runtime in
preproduction or production environments.

Adapting your incident response
processes for APIs
API attacks are inevitable, and your organization must deal with
threat actors on multiple fronts. Even though API protection is
key to defending your APIs in runtime, your organization’s ability
to respond in the event of an attack is just as critical. Not all API-
related risks are attack-oriented either, where dominant concerns
may include data exfiltration or scraping by an attacker. Your
incident response playbooks should encompass many unfore-
seen API events including unintentional data exposure, privacy
impacts, and availability issues.

You need API-centric incident response capabilities that inte-
grate with the work streams and tooling of development and Sec-
Ops teams. Data feeds into the organization’s SIEM are a given,
though it should be done intelligently to provide useful signals.
Integration shouldn’t be limited to a basic log feed or data dump.
API security tooling should intelligently prioritize events, pro-
vide actionable security alerts, and support the work streams of a
modern SOC and IT workforce.

Defining API Security Best Practices
The broad landscape of API design patterns and API consumer
types complicates security requirements for your organization.
The diversity of the API landscape makes arriving at a set of best
practices challenging. Your security best practices must be com-
prehensive and inclusive of many technology areas.

APIs are implemented, operated, or interacted with by many
roles within an organization including development, API prod-
uct teams, API operations teams, application security teams, and
security operations. As with DevOps practices, collaboration is

CHAPTER 4 Securing APIs 39

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

crucial for building and operating secure APIs. The following sec-
tions detail a range of API security best practices you should con-
sider adopting.

API discovery and cataloging
An accurate API inventory is critical to many aspects of IT within
your organization. Compliance, risk, and privacy teams require
API inventory, particularly as they must answer to regulatory
bodies. Security teams also need API inventory so that they can
have a realistic view of their attack surface and risk posture to
help prioritize the wide range of API security activities that must
be accounted for. Here are the discovery best practices:

 » Discover APIs in lower environments and not just produc-
tion. Lower environments often have lax security and make
for primary attack targets.

 » Include API dependencies and third-party APIs in your API
catalog. Third-party APIs are part of the attack surface.

 » Tag and label APIs and microservices as a DevOps best
practice. Such processes also serve as enablers of many
other API life cycle activities.

Security testing
Traditional scanning technologies struggle with parsing custom-
developed code and business logic because design patterns and
coding practices vary per developer. Use traditional security test-
ing tools to verify certain elements of an API implementation such
as well-known misconfigurations, vulnerabilities, and exploit-
able conditions, but you must operate these tools with awareness
of the limitations. Testing best practices include the following:

 » Statically analyze your API code for well-defined exploitable
conditions in code as it’s committed to VCS, built and
delivered in CI/CD pipelines, or both.

 » Check for known vulnerable third-party dependencies and
open-source componentry in your API code.

 » Dynamically analyze and fuzz deployed APIs to identify
exploitable conditions in the fully integrated system.

40 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API mediation and architecture
API mediation provides for improved visibility, accelerated deliv-
ery, increased operational flexibility, and improved enforcement
capability. The latter is often used to enforce API access control.
An organization can commonly achieve mediation by deploying
API gateways and microgateways that function as reverse prox-
ies, forward proxies, or both. The following are mediation best
practices:

 » Mediate your APIs to improve observability and monitoring
capabilities for inner and outer APIs.

 » Use mediation mechanisms like API gateways to enforce
access control, rate limiting, and message filtering.

 » Augment your mediation mechanisms with API security
tooling that can provide context and make the difference
between static and dynamic control.

Network security
Traditional network perimeters erode as organizations move
toward highly distributed APIs and cloud services. Infrastructure
becomes more ephemeral, virtualized, and containerized. Con-
sequently, this evolution makes some traditional network access
control approaches ineffective. Modernized network security
begins to heavily intersect with identity and access management
(IAM), or “identity as the perimeter.” The following are network
security best practices:

 » Enable encrypted transport to protect the data your APIs
transmit over unprotected networks.

 » Use IP address allow and deny lists if you have small
numbers of API consumers, such as with partner or supplier
integration use cases.

 » Look to dynamic rate limiting for API deployments where API
consumers are too numerous or too unpredictable.

Data security
Appropriate techniques for securing data include masking,
tokenizing, or encrypting. Many data security efforts focus on

CHAPTER 4 Securing APIs 41

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

securing data at rest in a back-end system, such as database
encryption or field-level encryption. These encryption approaches
don’t protect your data in cases where attackers obtain a creden-
tial or authorized session because the data will be decrypted for
them when accessed through an API. Data security best practices
include the following:

 » Use encryption selectively and as mandated by regulation
due to operational complexity. Transport protection suffices
for most API use cases.

 » Avoid sending too much data to API callers and relying on
the API client or front-end to filter data. Sensitive or private
data is always visible in traffic.

 » Adjust for modern threats like scraping or data inference
where encryption isn’t an effective mitigation.

Authentication and authorization
Authentication (authN) and authorization (authZ), and by exten-
sion identity and access management (IAM), are foundational to
all security domains, including API security. IAM is used heavily
for access control to functionality and data. When implementing
authN and authZ, you must account for user identities as well as
machine identities. Even though it’s possible to challenge a user
for additional authentication material in a session, this option
isn’t available for machine communication. AuthN and authZ best
practices include the following:

 » Continuously authenticate and authorize API consumers
throughout a session and based on behaviors, not just
initially during login.

 » Use modern authN and authZ protocols like OpenID Connect
(OIDC) and OAuth2.

 » Avoid using API keys as a sole means of authentication. API
keys are primarily version control and should be paired with
other authentication.

Runtime protection
Runtime protection, sometimes referred to as threat protection,
is often delivered through proxies like API gateways and WAFs.

42 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These mechanisms rely on message filters and static signatures,
which can catch some types of attacks that follow well-defined
patterns but miss most forms of API abuse. Runtime protections
are useful for identifying misconfigurations in API infrastructure
as well as behavior anomalies like credential stuffing, brute forc-
ing, or scraping attempts by attackers. Runtime protection best
practices include the following:

 » Enable threat protection features within your API gateways
and API management to mitigate risk of injection flaws like
JSON and XML injection.

 » Ensure that DoS and DDoS mitigation are part of your API
protection approach. If attackers can’t exploit or abuse an
API, they often revert to DoS techniques.

 » Augment traditional runtime controls with AI/ML and
behavior analysis engines to detect novel API attacks where
pre-built signatures leave gaps.

CHAPTER 5 Ten Things You Can Do Now to Secure APIs 43

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Designating security leads and forming a
strategy

 » Protecting APIs and adapting incident
response

 » Starting and maintaining an API inventory

Ten Things You Can Do
Now to Secure APIs

Not sure about what you can do to secure APIs in your
 organization? What follows is a list of ten high-priority
items you should focus on to identify and protect your APIs:

 » Identify API security leads. Start with your application security
team if you have one and identify API security leads to collabo-
rate on discovery, testing, protection, and incident response.
Your API security expertise may be scattered across develop-
ment, infrastructure, operations, and security roles. Or you may
find that expertise is concentrated within API product teams.

 » Deploy API-specific runtime protection. Attackers
regularly aim to exploit or abuse APIs. Data exposures and
privacy impacts can be just as damaging if not more. Seek
protections that can analyze API behaviors real time to
detect and stop attackers early.

 » Adapt incident response for APIs. Augment your digital
forensics and incident response processes for the world of APIs.
API abuse and data exposures may not rank high on the list
initially, but successful API attacks have massive impact for
organizations. Ensure that SecOps teams have what they need so
they can respond quickly and loop in appropriate API expertise.

44 API Security For Dummies, Salt Security Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Define API remediation process. As you discover, test, and
protect APIs, you’ll inevitably find code-level flaws or
misconfigurations that leave APIs vulnerable. Formalize your
remediation steps that also help power feedback loops
critical in DevOps. Remediation often requires a mix of roles
and can also include third parties.

 » Establish an API inventory. Build an initial API inventory
and plan to maintain it as your API landscape evolves. Your
API inventory is more than what is contained in asset
management databases or API management. You’ll need
discovery mechanisms that can identify API endpoints,
gather metadata, and classify potentially exposed data types.

 » Identify shadow and zombie APIs. API inventory and API
schema definitions will only carry you so far. You’ll need to
scan on-premises and cloud environments continuously for
shadow (undocumented) and zombie (outdated) APIs. These
APIs present a significant security risk and are quickly
uncovered by attackers.

 » Classify data types in APIs. API discovery is useful for
prioritizing where to place security controls or where to
monitor more heavily, and for identifying and classifying
potential data exposures. Data may be classified as sensitive
or private depending on regulation. This form of API-specific
data classification is critical for governance, risk, compliance,
and privacy initiatives.

 » Analyze API schema and code. Scanning for flaws early and
prior to production delivery is promoted as part of security best
practice. Such an approach can save IT cycles and reduce the
likelihood that an attacker will find exploitable conditions.
Continuously analyze API schema, scan code during build phases,
and/or scan deployed APIs in runtime for exploitable conditions.

 » Skill up on modern architecture. Understanding distinctions
between monolith and microservices, inner and outer APIs, and
cloud-native design patterns is useful for determining where
best to discover, mediate, and protect APIs. Your security
approach can’t rely on controlling a network perimeter,
because in modern architectures the perimeter has eroded.

 » Work toward a holistic API security strategy. Expand your
application security program (if you have one) to include network
and infrastructure elements. Establish a regular cadence with
security and development teams to review API roadmaps, best
practices, and issues. Document, iterate, and improve over time.

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

www.salt.security.com

https://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Understanding APIs
	Defining APIs
	Recognizing the common types of APIs
	Identifying API protocols

	Designing Modern Applications with APIs
	Decoupling front ends and back ends
	Considering impacts from microservices architecture
	Altering the API picture: Cloud-native’s role

	Chapter 2 Laying the Foundations for API Security
	Documenting APIs
	Steering clear of traditional documentation approaches
	Working with API schema definitions

	Testing APIs
	Utilizing application security testing tools
	Using API schema validators

	Mediating 101: APIs and the Relevant Mechanisms
	Deploying proxies — reverse and forward
	Functioning as API mediation points
	Enforcing policy with API management

	Chapter 3 Getting the Lowdown on API Attacks
	Understanding How API Attacks Differ from Application Attacks
	The front-end application is only a means to an end
	APIs underpin digital supply chains

	Taking a Closer Look at the OWASP API Security Top 10
	API1:2019 Broken Object Level Authorization
	API2:2019 Broken User Authentication
	API3:2019 Excessive Data Exposure
	API4:2019 Lack of Resources & Rate Limiting
	API5:2019 Broken Function Level Authorization
	API6:2019 Mass Assignment
	API7:2019 Security Misconfiguration
	API8:2019 Injection
	API9:2019 Improper Assets Management
	API10:2019 Insufficient Logging & Monitoring

	Recognizing Automated Attack Patterns
	Brute forcing, credential stuffing, and account takeover, oh my!
	The plague of scraping

	Chapter 4 Securing APIs
	Recognizing Why Architecture Is Essential
	Focusing on architecture
	Identifying core traits in an API security platform

	Evolving Your Catalog: A Continuous Discovery of APIs
	Considering discovery capabilities you need
	Incorporating data classification

	Protecting APIs Continuously
	Identifying the detection capabilities you need
	Focusing on the protection capabilities you need

	Remediating APIs: Enhancing Capabilities and Streamlining Workflow
	Naming remediation capabilities you need
	Adapting your incident response processes for APIs

	Defining API Security Best Practices
	API discovery and cataloging
	Security testing
	API mediation and architecture
	Network security
	Data security
	Authentication and authorization
	Runtime protection

	Chapter 5 Ten Things You Can Do Now to Secure APIs
	EULA

API Security

