

 Protecting Against the OWASP API
 Security Top 10 with Salt Security

 TABLE OF CONTENTS

 API1�2019 Broken Object Level Authorization 1

 API2�2019 Broken User Authentication 3

 API3�2019 Excessive Data Exposure 7

 API4�2019 Lack of Resources & Rate Limiting 9

 API5�2019 Broken Function Level Authorization 12

 API6�2019 Mass Assignment 14

 API7�2019 Security Misconfiguration 17

 API8�2019 Injection 20

 API9�2019 Improper Assets Management 23

 API10�2019 Insufficient Logging & Monitoring 25

 Conclusion: Protecting APIs from the OWASP API Security Top 10 Threats 26

 APIs have evolved significantly since the early days when just a few
 companies used APIs to address a limited set of needs. In recent
 years, API use has exploded, with APIs becoming a critical
 component of digital transformation and automation efforts. They
 are increasingly prevalent in the application environments of
 businesses of all sizes addressing an endless set of use cases.

 Attackers and researchers have long realized the role of APIs in providing
 functionality and exposing data, and attackers have honed in on APIs as a primary
 attack vector. Proof of this is seen in many of the recent high-profile breaches, and
 analysts like Gartner predicting “By 2022, API abuses will move from an infrequent
 to the most-frequent attack vector, resulting in data breaches for enterprise web
 applications.”

 With the increase of API-related security incidents and breaches, the Open Web
 Application Security Project �OWASP� released the first-ever API Security Top 10 at
 the end of 2019 to raise awareness about the most common API security threats
 plaguing organizations.

 This paper provides a detailed review of each threat outlined in the OWASP API
 Security Top 10, including examples and insight to help you understand how Salt
 Security protects your organization from the threats targeting APIs and API-based
 applications.

 API1:2019 Broken Object Level Authorization

 Description
 APIs often expose endpoints that handle object identifiers, creating a wide potential
 attack surface. Object level authorization is an access control mechanism usually
 implemented at the code level to validate a user’s ability to access a given object.
 Authorization and access control mechanisms in modern applications are complex
 and wide-spread. Even if an application implements a proper infrastructure for
 authorization checks, developers often forget to apply these checks before
 accessing an object.

 Attackers can easily exploit API endpoints that are vulnerable to broken object level
 authorization �BOLA� by manipulating the ID of an object that is sent within an API
 request. These vulnerabilities are extremely common in API-based applications
 because the server component usually does not fully track the client’s state.
 Instead, the server component usually relies on parameters like object IDs sent
 from the client, to decide which objects can be accessed.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 1

 Any access of unauthorized data is severe, regardless of its data classification or
 data sensitivity. These types of authorization flaws are also not easily detectable
 with automated static or dynamic testing.

 Every API endpoint that receives an ID of an object, and performs any type of
 action on the object, should implement object level authorization checks. These
 checks should be made continuously throughout a given session to validate that
 the logged-in user has access to perform the requested action on a requested
 object.

 Potential Impact
 Failure to enforce authorization at the object level or broken improper object level
 authorization can lead to data exfiltration as well as unauthorized viewing,
 modification, or destruction of data. BOLA can also lead to full account takeover
 such as in cases where an attacker can compromise a password reset flow and
 reset credentials of an account they aren’t authorized to.

 Example

 In this example, the backend logic of the application queries the database with
 the userId in the query parameter while verifying the authorization with the userId
 in the cookie. Under normal conditions these two values should match, however, an
 attacker could simply modify the userId value in the query parameter in order to
 access unauthorized data.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 2

 The attacker �John Smith) is logged in with userId 207939055 . When the attacker
 changes the userId in the query parameter to userId 207938044 the application
 does not validate that the userId of the authenticated user matches that of the
 record being requested in the query parameter or whether the authenticated user
 is authorized to view that given record. As a result, the database backend returns
 the record for David Miller as opposed to John Smith.

 If the userIds are sequential the attacker can simply enumerate the query
 parameter userId value to scrape, or exfiltrate, large amounts of data, particularly if
 rate limits aren’t enforced.

 Real World Example: How I could have hacked your Uber account
 In 2019 a security researcher disclosed a BOLA vulnerability that would have
 enabled an attacker to take over any user account on Uber. By exploiting the
 vulnerability, the attacker could access another user’s account to track the target
 user’s location, take rides, and more. The attacker could also exploit the BOLA
 vulnerability to harvest Uber mobile app access tokens, and then use those access
 tokens to take over Uber Driver and Uber Eats accounts. The Uber application
 userId could be easily enumerated by supplying a user’s phone number or email
 address in another API request.

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs and API gateways miss these types of
 attacks because they don’t understand API context and don’t baseline normal API
 usage. In this case, these tools do not know that the userId in the query parameter
 and the userId in the cookie should match. Also consider that since this is not a
 known, predictable attack pattern like a code injection where basic pattern
 matching and message filtering can be employed, it won’t be identified by the
 signatures used by a WAF or API gateway.

 How Salt Prevents BOLA Attacks
 In order to prevent BOLA attacks Salt learns the business logic of an API and
 detects when one authenticated user is trying to gain unauthorized access to
 another user’s data. In this particular case, Salt understands the two objects should
 match and that the authenticated user is authorized to access the requested
 object. This kind of detection requires the analysis of large amounts of API traffic in
 order to gain context and understand the normal usage for each API. Salt creates a
 baseline of normal usage and can identify abnormal behavior like an attacker
 manipulating the userId in a query parameter in GET requests , or a userId variable
 within a message body of POST requests .

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 3

https://www.appsecure.security/post/uber-account-hack-anand-prakash

 API2:2019 Broken User Authentication

 Description
 Authentication in APIs is a complex and confusing topic. Software and security
 engineers might have misconceptions about what the boundaries of authentication
 are and how to correctly implement it. Prompting users or machines for credentials
 and additional authentication factors may also not be possible in direct API
 communication. In addition, authentication mechanisms are easy targets for
 attackers, particularly if the authentication mechanisms are fully exposed or public.
 These two points make the authentication component potentially vulnerable to
 many exploits. Advanced attacks that target authentication include brute-forcing
 (of authentication), credential stuffing and credential cracking.

 Authentication in APIs has two sub-issues:

 1. Lack of protection mechanisms - API endpoints that are responsible for
 authentication must be treated differently from regular endpoints and
 implement extra layers of protection.

 2. Mis-implementation of the mechanism - The mechanism is used or
 implemented without considering the attack vectors, or the mechanism is
 not appropriate for the use case. As an example, an authentication
 mechanism designed for IoT devices is typically not the right choice for a
 web application like an eCommerce site.

 Technical factors leading to broken authentication in APIs are numerous and
 include:

 ● Weak password complexity
 ● Short or missing password history
 ● Excessively high or missing account lockout thresholds
 ● Failure to provision unique certificates per device in certificate-based

 authentication
 ● Excessively long durations for password and certificate rotations
 ● Authentication material exposed in URLs and GET requests
 ● Authentication tokens with insufficient entropy
 ● Use of API keys as the only authentication material
 ● Failure to validate authenticity of authentication material
 ● Insecure JSON Web token �JWT� configuration such as use of weak digital

 signature algorithm or missing signatures
 ● Use of small key sizes in encryption or hashing algorithms
 ● Use of weak or broken ciphers

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 4

 ● Use of algorithms that are inappropriate for the use case, such as use of
 hashing algorithms rather than password-based key derivation functions
 �PBKDF�.

 ● Failure to step-up authentication if authentication flows are being targeted,
 such as dynamically challenging with CAPTCHA or second factor
 authentication �2FA� material.

 Potential Impact
 An attacker who is able to successfully exploit vulnerabilities in authentication
 mechanisms can take over user accounts, gain unauthorized access to another
 user’s data, or make unauthorized transactions as another user. Similarly, APIs may
 be designed explicitly for machine communication, or direct API communication. An
 attacker who compromises that authentication mechanism or authenticated
 session can potentially gain access to all of the data that machine identity is
 entitled to access. There are also variants of this type of attack in cloud-native
 design with compromises of workload authentication and server-side API metadata
 services.

 Example

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 5

 Common examples of attacks targeting broken user authentication include API
 enumeration and brute-forcing attacks that make high volumes of API requests with
 minor changes. These attacks may also target broken or weak authentication.

 As an example, password recovery mechanisms often send an SMS to a user’s
 phone with a reset token consisting of a series of numbers. An attacker can initiate
 a password reset, and if the API does not implement rate limiting, the attacker can
 enumerate (or “guess”) the password reset token until they get a successful
 response. Depending on the throughput of the target API endpoint, an attacker may
 be able to iterate through thousands or millions of different combinations within a
 few minutes.

 Real World Example: Unpacking the Parler Data Breach
 In 2021, Salt analysis of the Parler data breach and the general consensus of media
 outlets and hacktivists found that Parler’s authentication was at least partially
 absent. This flaw, along with other security flaws in the Parler platform, enabled the
 scraping of at least 70TB of data. Based on what the hacktivist shared publicly, at
 least one endpoint was available without authentication which provided access to
 user data without requiring authentication. In Parler’s case, these APIs likely were
 not intended to be anonymous, public APIs. The APIs allowed direct access to
 Parler user profile information and user content, including message posts, images,
 and videos. It is unlikely that Parler would have intended or configured these APIs
 and pages to be accessible without authentication.

 Some reports indicated there was a security misconfiguration as a result of Twilio
 integration that was later decommissioned. Allegedly, some of the archivists used
 this to bypass multifactor �MFA� authentication during account creation and extract
 data. The issue was later disputed by the hacktivist, and Twilio representatives
 have also stated it was false. An MFA misconfiguration would further fuel the
 debate whether the Parler data was truly public and Parler APIs were lacking
 authentication.

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs don’t typically enforce authentication at a
 granular level and may only verify presence of a session identifier or authentication
 token in a given request. API gateways may enforce authentication as part of API
 management access control policies, but that presumes owning teams have
 defined policy appropriately. There is often an operational breakdown between
 teams creating APIs, teams publishing APIs, and teams securing APIs. Even still, API
 gateways lack understanding of what authentication is proper for an API in a given
 use case. Traditional security controls also lack capabilities to track attack traffic
 over time, which is necessary to decipher the different forms of advanced attacks
 targeting authentication such as credential stuffing and credential cracking. They

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 6

https://salt.security/blog/unpacking-the-parler-data-breach

 will often rely on excessive API consumption rates to identify basic brute-force
 attack attempts.

 How Salt Prevents User Authentication Attacks
 In order to protect against broken user authentication attacks, Salt profiles the
 typical authentication sequence for every API flow. The solution can then detect
 abnormal behavior such as missing credentials, missing authentication factors, or
 authentication calls that are out of sequence. Determining the baseline and
 identifying abnormal behavior can only be done by analyzing large amounts of
 production API traffic. This form of analysis is critical for mitigating advanced
 attacks that target authentication such as credential stuffing and credential
 cracking.

 API3:2019 Excessive Data Exposure

 Description
 Exploitation of Excessive Data Exposure is simple, and is usually performed by
 sniffing the traffic to analyze the API responses, looking for sensitive data exposure
 that should not be returned to the user.

 APIs rely on clients to perform the data filtering. Since APIs are used as data
 sources, sometimes developers try to implement them in a generic way without
 thinking about the sensitivity of the exposed data. Traditional security scanning and
 runtime detection tools will sometimes alert on this type of vulnerability, but they
 can’t differentiate between legitimate data returned from the API and sensitive data
 that should not be returned. This requires a deep understanding of the application
 design and API context.

 Potential Impact
 APIs often send more information than is needed in an API response and leave it up
 to the client application to filter the data and render a view for the user. An attacker
 can sniff the traffic sent to the client to gain access to potentially sensitive data
 that can include information such as account numbers, email addresses, phone
 numbers, and access tokens.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 7

 Example

 In the example, the client-side code running in the user’s web browser is submitting
 a POST request to a backend API to retrieve stored payment information. In this
 case, the API is retrieving stored credit card information, specifically primary
 account number �PAN� and card verification value �CVV� code. Within the world of
 credit card handling and payment processing, this type of data is deemed to be
 sensitive as part of PCI�DSS and must be protected appropriately. The scope of
 what is necessary for protection varies depending on exposure of the cardholder
 data environment, or where the data is stored, processed, or transmitted.

 This sensitive data sharing may be intentional as part of the design or necessary
 for functionality. As a result, organizations augment with additional security
 controls such as stronger authentication or encrypted transport to ensure the data
 is sufficiently protected. In the example, you can see additional HTTP security
 headers to help protect the data, such as x-frame-options for mitigating
 cross-frame scripting attacks and x-xss-protection for mitigating cross-site
 scripting attacks. Some organizations may also mask data being returned to a client
 to avoid cases where someone intercepts traffic or views data outside of the
 intended client application. Relying on the client-side code to filter or obscure such
 sensitive data is typically not appropriate since attackers regularly bypass
 client-side web application and mobile application code and call APIs directly.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 8

 Real World Example: Flaw left user data of 2 million Bounceshare customers
 vulnerable to hack
 In 2019 a security researcher found that by passing a phone number in an API
 request the Bounceshare application would return an access token and RiderId
 associated with the account for that phone number. An attacker could automate
 this process by using a phone number dump found online and a script allowing
 them to gain unauthorized access to multiple user accounts. Once logged in to a
 target user’s Bounceshare account the attacker would have access to sensitive
 information such as their driver’s license, email address, and photos. If the target
 user had linked their Paytm account for payments, the attacker could also see the
 user's balance and book rides from the target user's account.

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs and API gateways have no context to identify
 sensitive data being sent over an API and therefore do not understand the
 exposure risk of the data being sent. Typically, they will employ basic pattern
 matching and message filtering to identify sensitive data types, also referred to as
 regular expression (regex) patterns. While these types of filters can catch
 well-defined sensitive data types such as PANs or social security numbers (SSNs),
 they do not understand API context and business logic flows. They will flag any
 data that matches the pattern, regardless of whether it is necessary to block the
 request, encrypt payloads or obscure data. API gateways are often used to mediate
 API calls that contain sensitive data, and this may be necessary as part of an
 overarching enterprise architecture, application design or systems integration.
 Blocking or masking sensitive data wholesale often breaks functionality as a result
 leaving security teams reluctant to aggressively use these capabilities in proxies in
 favor of relying on the API/application layer to control exposure.

 How Salt Prevents Excessive Data Exposure
 Salt identifies and reports on the large variety of sensitive data types that can be
 sent in API requests and responses. Salt also has the ability to baseline and track
 API access per endpoint and per user in order to identify excessive consumption of
 sensitive data. Salt also gains API context and provides a range of response actions
 so that not every transmission of sensitive data results in an alert or blocked
 request.

 API4:2019 Lack of Resources & Rate Limiting

 Description
 API requests consume resources such as network, CPU, memory, and storage. The
 amount of resources required to satisfy a request greatly depends on the input
 from the user and the business logic of the endpoint. APIs do not always impose
 restrictions on the size or number of resources that can be requested by the client

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 9

https://salt.security/blog/api3-2019-excessive-data-exposure
https://salt.security/blog/api3-2019-excessive-data-exposure

 or user. Not only can this impact the API server performance, leading to Denial of
 Service �DoS�, but it also leaves the door open to brute-forcing and enumeration
 attacks against APIs that provide authentication and data fetching functionality.
 This includes automated threats like credential cracking and token cracking among
 others.

 Potential Impact
 When determining impact, it is best to break down the impact of this issue into two
 sub-components:

 1. With respect to lack of resource limiting, an attacker can craft a single API
 call that can overwhelm an application, impacting the application’s
 performance and responsiveness or causing it to become unresponsive.
 This type of attack is sometimes referred to as an application-level DoS.
 These types of attacks not only impact availability though. They may also
 expose the system, application or API to authentication attacks and
 excessive data leakage.

 2. With respect to lack of rate limiting, an attacker may craft and submit high
 volumes of API requests to overwhelm system resources, brute force login
 credentials, quickly enumerate through large data sets, or exfiltrate large
 amounts of data.

 Example

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 10

 In the example above of a lack of resource limit, the attacker has increased
 the max_return and page_size values for the search filter from 250 to 20,000. This
 increase would cause the application to return an excessive number of items in
 response to a query. It could also cause the application to slow down or become
 unresponsive for all users.

 Real World Example: Checkmarx Research: SoundCloud API Security Advisory
 In 2020 the Checkmarx research team found that SoundCloud had not properly
 implemented rate limiting for the /tracks endpoint of the api-v2.soundcloud.com
 API. Since no validation was performed for the number of track IDs in the ids list, an
 attacker could manipulate the list to retrieve an arbitrary number of tracks in a
 single request and overwhelm the server. Under normal conditions the request
 issued by the SoundCloud WebApp includes 16 track IDs in the ids query string
 parameter. The researcher was able to manipulate the list to retrieve up to 689
 tracks in a single request causing the service response time to increase by almost
 9x. According to Checkmarx “This vulnerability could be used to execute a
 Distributed Denial of Service �DDoS� attack by using a specially crafted list of track
 IDs to maximize the response size, and issuing requests from several sources at the
 same time to deplete resources in the application layer will make the target’s
 system services unavailable.”

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs, API gateways, and other proxying
 mechanisms will commonly offer basic or static rate limiting which are difficult to
 enforce at scale. Security teams may not know enough about the application design
 to know what “normal” looks like in order to enforce limits to thwart attackers while
 not impacting business functionality. WAFs and API gateways lack the context
 required to inform security teams on what a normal value should be for an API
 parameter, and they will miss attacks where an attacker manipulates a single API
 parameter value to overwhelm the application. These proxies may also only cover
 ingress, or inbound requests, as opposed to egress traffic, or outbound requests
 and responses.

 How Salt Prevents Lack of Resources & Rate Limiting Attacks
 Salt identifies calls to API endpoints and alterations to API parameter values that fall
 outside of normal usage. Salt does this by analyzing all API traffic in order to create
 a baseline of typical behavior and identifying deviations that fall outside of that
 baseline.

 In the example above Salt will create a baseline of values for the max_return and
 page_size parameters and will identify that a value of 20,000 is abnormal. Salt can
 then alert on and block an attacker who crafts API requests that deviate from the
 baseline.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 11

https://www.checkmarx.com/blog/checkmarx-research-soundcloud-api-security-advisory

 API5:2019 Broken Function Level Authorization

 Description
 Authorization flaws are often the result of improperly implemented or misconfigured
 authorization. Implementing adequate authorization mechanisms is a complex task,
 since modern applications can contain many types of roles, groups, and user
 hierarchy such as sub-users and users with more than one role. This is further
 complicated with distributed application architectures and cloud-native design.
 Broken function level authorization �BFLA� shares some similarity to BOLA in this
 regard, though the target with BFLA is API functions as opposed to objects that
 APIs interact with as in the case of BOLA. Attackers will attempt to exploit both
 vulnerabilities when targeting APIs in order to escalate privileges horizontally or
 vertically.

 Attackers discover these flaws in APIs since API calls are structured and
 predictable, even in REST designs. This can be done in the absence of API
 documentation or schema definitions by reverse engineering client-side code and
 intercepting application traffic. Some API endpoints might also be exposed to
 regular, non-privileged users making them easier for attackers to discover.

 Attackers can exploit these flaws by sending legitimate API requests to an API
 endpoint that they should not have access to or by intercepting and manipulating
 API requests originating from client applications. As an example, an attacker could
 change an HTTP method from GET to PUT. Alternatively, the attacker might also
 alter a query parameter or message body variable such as changing the string
 “users” to "admins" in an API request.

 Potential Impact
 Attackers exploiting broken function level authorization vulnerabilities can gain
 access to unauthorized resources, take over another user’s account, create/delete
 accounts, or escalate privileges to gain administrative access.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 12

 Example

 In the example above, the attacker has changed the method
 from POST to DELETE allowing them to delete the account associated with
 user_id=exampleId_100. Access to the DELETE method should have been restricted
 to users with administrative access but was allowed due to an inadequate
 authorization policy.

 Real World Example: New Relic Synthetics users can escalate privileges to add or
 modify alerts
 In 2018 Jon Bottarini found that a restricted user could make changes to alerts on
 Synthetics monitors without the proper permissions to do so. In fact, they could
 make changes with no permissions at all as a result of the privilege escalation
 weakness that was present in the product at that time. Exploitation involved
 submitting a legitimate request to an API endpoint that was otherwise not visible to
 the restricted user.

 As part of his security research, Jon captured traffic of a privileged session using
 an intercepting proxy tool, Portswigger Burp Suite . In particular, this traffic included
 a POST request to an API endpoint and function that creates alerts on Synthethics
 monitors. He found that you could trap a GET request from the non-privileged
 session, retain the tokens and cookies for that restricted user, and alter the
 remainder of the trapped request to resemble the privileged POST request. This
 manipulation of API traffic to access functionality not visible in the UI (at all or to
 that user and their permissions) is a common technique attackers use to exploit
 function level authorization weaknesses and escalate privileges.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 13

https://hackerone.com/reports/334143
https://hackerone.com/reports/334143
https://portswigger.net/burp

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs and API gateways lack context of API activity
 and therefore do not know that the attacker in the example above should not be
 able to send a DELETE method. This API call would be seen as legitimate and would
 pass through these security controls. WAFs and API gateways sometimes support
 explicit, statically defined message filters, often referred to as a positive security
 approach. However, these approaches can inhibit or break business functionality,
 and most organizations find them difficult to operationalize at scale. Restricting
 HTTP methods is also an easier task than restricting API parameters and values,
 the latter of which requires deeper subject matter expertise on the design of the
 API.

 The activity in the Facebook example above would be missed by WAFs and API
 gateways for the same reason. These security controls would not know that the 3rd
 party applications should no longer have access to the deprecated or restricted API
 functions. Tuning the controls would have required appropriate knowledge transfer
 between development, operations, and security teams to implement an appropriate
 static filter in the appropriate proxy within the overall enterprise architecture.

 How Salt Prevents Broken Function Level Authorization Attacks
 Salt continuously baselines typical HTTP access patterns per API endpoint and per
 user. With this baseline, Salt can identify calls with unexpected parameters or HTTP
 methods sent to specific API endpoints such as in the DELETE example above. It is
 critical that the solution is capable of baselining continuously, as APIs may go
 through a high rate of change as a result of modern development and release
 practices. Salt is able to identify and prevent attackers or unauthorized users from
 accessing administrative level capabilities or unauthorized functionality as in the
 Facebook example above.

 API6:2019 Mass Assignment

 Description
 Modern application frameworks encourage developers to use functions that
 automatically bind input from the client into code variables and internal objects in
 order to help simplify and speed up development within the framework. Attackers
 can use this side effect of frameworks to their advantage by updating or
 overwriting properties of sensitive objects that developers never intended to
 expose. Mass assignment vulnerabilities are also sometimes referred to as
 autobinding or object injection vulnerabilities.

 Exploitation of mass assignment vulnerabilities in APIs requires an understanding of
 the application’s business logic, objects relations, and the API structure. APIs
 expose their underlying implementation along with property names by design. An

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 14

 attacker can also gain further understanding by reverse engineering client-side
 code, reading API documentation, probing the API to guess object properties,
 exploring other API endpoints, or by providing additional object properties in
 request payloads to see how the API responds. APIs need to be exposed to some
 extent in order to enable functionality and data exchange. As a result, attackers are
 able to exploit mass assignment vulnerabilities more easily in APIs and API-based
 applications.

 Objects in modern applications can contain many properties, some of which can be
 updated directly by the client such as user first name or address details, and other
 sensitive properties that should not, such as user access entitlements.

 An API endpoint is vulnerable if it automatically converts client provided data into
 internal object properties without considering the sensitivity and the exposure level
 of these properties. Binding client provided data like JSON attribute-values pairs to
 data models without proper filtering of properties based on an allowlist usually
 leads to mass assignment vulnerability.

 Potential Impact
 An attacker exploiting mass assignment vulnerabilities can update object properties
 that they should not have access to, allowing them to escalate privileges, tamper
 with data, and bypass security mechanisms.

 Example

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 15

 In the previous example, the attacker has changed the API call to update their
 account, escalate their role and privileges to an “admin” role, and bypass
 single-sign on �SSO�. If successful, the attacker can then perform actions within
 the application as an administrator.

 Real World Example: Hacking rails/rails repo
 In 2012, a security researcher by the name of Egor Homakov found a critical mass
 assignment vulnerability in GitHub’s public key form update function. This mass
 assignment vulnerability allowed any user to associate their public key to a given
 GitHub public or private repo and take ownership of that repo. The attack made use
 of one of GitHub’s public APIs to find the identifier ID for a given repo. An attacker
 could then pair this identifier with their own public key and submit the data to
 GitHub’s public key form update function to exploit the vulnerability.

 Egor attempted to report the issue to GitHub prior to GitHub having a responsible
 disclosure policy. Egor felt his report wasn’t being taken seriously or being
 addressed quickly enough, and so he chose to exploit the vulnerability, taking
 ownership of the public rails repo hosted on GitHub to prove their point. This
 takeover activity and resulting swarm of comments is still visible in the rails git
 commit history . GitHub resolved the issue within roughly an hour after Egor’s
 exploit. The vulnerability was very simple to exploit, which may have been why it
 was so overlooked. It was also a catalyst for GitHub developing a responsible
 disclosure policy that still stands today , and which has evolved into GitHub’s public
 bug bounty program .

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs and API gateways lack context of API activity
 and intended business logic. They can’t know if the API caller in the example above
 should be able to send a request using the PUT method with additional parameters,
 failing to differentiate between a legitimate call and malicious activity. To these
 traditional controls, this API call looks normal. They lack the context to know that
 this user is not an administrator, and the user should not have access to these
 additional parameters. At best, a WAF or API gateway may be able to offer basic
 message filtering mechanisms to block this type of request wholesale. However,
 additional parameters may be necessary for other users and other use cases. It
 would also require detailed knowledge upfront from development teams on the
 design and intended use of the API so that operational teams can implement even
 basic message filters.

 How Salt Prevents Mass Assignment Attacks
 Salt identifies anomalous API activity where attackers send manipulated API
 requests with unauthorized parameters. To do this, Salt continuously baselines
 normal API behavior and identifies when additional parameters are passed in API
 calls that fall outside of typical behavior. Salt is also able to identify attackers as

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 16

https://homakov.blogspot.com/2012/03/how-to.html
https://homakov.blogspot.com/
https://github.com/rails/rails/commit/b83965785db1eec019edf1fc272b1aa393e6dc57
https://github.com/rails/rails/commit/b83965785db1eec019edf1fc272b1aa393e6dc57
https://github.blog/2012-03-05-responsible-disclosure-policy/
https://github.blog/2012-03-05-responsible-disclosure-policy/
https://docs.github.com/en/github/site-policy/responsible-disclosure-of-security-vulnerabilities
https://bounty.github.com/
https://bounty.github.com/

 they probe the API during their reconnaissance phase to gain an understanding of
 the API structure and business logic.

 API7:2019 Security Misconfiguration

 Description
 This issue is a catch-all for a wide range of security misconfigurations that often
 negatively impact API security as a whole and introduce vulnerabilities
 inadvertently. Some examples of security misconfigurations include insecure
 default configurations, incomplete or ad-hoc configurations, open cloud storage,
 misconfigured HTTP headers, unnecessary HTTP methods, overly permissive
 Cross-Origin resource sharing �CORS�, and verbose error messages.

 Potential Impact
 Attackers can exploit security misconfigurations to gain knowledge of the
 application and API components during their reconnaissance phase. Detailed errors
 such as stack trace errors can expose sensitive user data and system details that
 can aid an attacker during their reconnaissance phase to find exploitable
 technology including outdated or misconfigured web and application servers.
 Attackers also exploit misconfigurations to pivot their attacks against APIs, such as
 in the case of an authentication bypass resulting from misconfigured access control
 mechanisms.

 Many automated tools are available to detect and exploit common or known
 misconfigurations such as unnecessary services or legacy options, though where
 you detect them in the technology stack varies greatly. Commonly used
 vulnerability scanners may only scan a running server for known vulnerabilities and
 misconfigurations in published software, usually in the form of CVE IDs. However,
 they don’t provide the complete picture, since misconfigurations can exist in
 underlying code, in third party dependencies, or in integrations with other
 enterprise architecture . As a result, organizations will often employ a barrage of
 security testing tooling in build pipelines to catch as much as possible prior to
 production deployment. There are certainly cases where security misconfiguration
 can be the result of something basic like a missing patch, but some
 misconfigurations are far stealthier and obscured by complex architectures.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 17

 Example

 In the example above, the attacker modified the connectionId parameter of
 the GET request to an API, causing the application server to respond with a detailed
 exception error with stack trace information. These errors can include information
 about the application environment such as software vendor names, software
 packages used, software versions, and lines of code within the backend
 server-side code that the error resulted. All of this information is invaluable to an
 attacker who is performing reconnaissance in order to gain an understanding of
 infrastructure that serves the applications and APIs as well as the application code
 itself in order to discover other potentially exploitable vulnerabilities.

 Real World Example: A Technical Analysis of the Capital One Cloud
 Misconfiguration Breach
 The Capital One breach in 2019 was a chained attack that was the result of a few
 issues, the primary vector being a misconfigured WAF. Through other sources we
 know that ModSecurity, an open-source WAF, was likely used to protect certain

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 18

https://www.fugue.co/blog/a-technical-analysis-of-the-capital-one-cloud-misconfiguration-breach
https://www.fugue.co/blog/a-technical-analysis-of-the-capital-one-cloud-misconfiguration-breach
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/

 Capital One web applications and APIs. The WAF was not appropriately
 configured or tuned for Capital One’s AWS environment and was overly
 permissive. As a result, an attacker was able to bypass the WAF’s content
 inspection and message filtering using a well crafted injection that targeted the
 backend AWS cloud metadata service. Harvesting metadata typically only
 available to running workloads, the attacker was able to pivot their attack and
 compromise other systems within the AWS cloud environment, commonly
 referred to as server-side request forgery attack.

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs and API gateways are not able to identify the
 modification to the connectionId parameter in the example above since it does not
 match a pattern of a typical attack. These tools also lack the context to know that
 the modified connectionId parameter does not match typical usage for this
 parameter or that it would result in an application server error, and therefore would
 miss this attack. These tools would also not alert on the excessive data sent in the
 API response since these traditional security controls lack context about this
 information to know that it is potentially sensitive and should not be returned in
 error messages. It’s also not uncommon for traditional security controls to only
 check client requests to APIs, or inbound traffic, and not the server response back
 to the client, or outbound traffic.

 How Salt Prevents Security Misconfiguration Vulnerabilities
 Salt is able to identify misconfigurations and security gaps for a given API and its
 serving infrastructure. Salt suggests remediation when manipulation attempts are
 made, and the application server itself is not configured to reject the request or
 mask sensitive data in the response. Salt is able to analyze all API activity and
 establish a baseline of typical API activity so that it can help identify excessive data
 and sensitive data sent in error messages. Salt also helps to identify the early
 activity of an attacker who is performing reconnaissance in order to look for
 security misconfigurations and learn more about the API structure and logic. Early
 detection defines the difference between a security incident, where you catch
 attacker behavior early in their methodology and stop it, as opposed to a breach,
 where an attacker is able to successfully exfiltrate data or compromise systems.

 API8:2019 Injection

 Description
 Injection flaws are very common in the web application space, and they carry over
 to web APIs. Structured Query Language �SQL� injection is one of the most well
 known, but there are other injection varieties that can impact a range of
 interpreters and parsers beyond just SQL including, Lightweight Directory Access

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 19

 Protocol �LDAP�, NoSQL, operating system �OS� commands, Extensible Markup
 Language �XML�, and Object-Relational Mapping �ORM�.
 Attackers exploit these injection vulnerabilities by sending malicious data to an API
 that is in turn processed by an interpreter or parsed by the application server and
 passed to some integrated service, such as a database management system
 �DBMS� or a database-as-a-service �DBaaS� in the case of SQL injection �SQLi).
 The interpreter or parser is essentially tricked into executing the unintended
 commands since they either lack the filtering directly or expect it to be filtered by
 other server-side code.

 Potential Impact
 Injection can lead to a wide range of impacts including information disclosure, data
 loss, denial of service �DoS�, or complete host takeover. In many cases, successful
 injection attacks expose large sets of unauthorized sensitive data. Attackers may
 also be able to create new functionality, perform remote code execution, or bypass
 authentication and authorization mechanisms altogether.

 Example

 In this example, the attacker appends the userID and sends additional syntax which
 will be parsed by the SQL query interpreter. This step could cause the database to
 return all rows in the table as opposed to just the row that matches the user’s ID.
 That is because the SQL interpreter will evaluate both portions of the submitted
 SQL query. The application logic was built with the expectation that the user will
 provide their legitimate userId, which is then passed to the database service for a
 lookup in the backend database table or view defined in the server-side code.
 Normally, the SQL database engine will look for a row with the identifier that
 matches that of the userId provided by the client.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 20

 In this case, the attacker provided two components of a query through the front
 end web API, terminating the first part of the query with the use of a “ ‘ “
 character. One query value is a userId, which need not even be valid. They also
 provided a query value that will result in a comparison of two numerical values.
 The value of 1 is of course equal to 1, which the SQL engine will evaluate as TRUE.
 Since the complete query string contains the OR operator, either component of
 the query that evaluates as TRUE will return TRUE for the final executed query. As
 a result, all table rows will match this SQL query string. The database service will
 return all rows in the table, and the data will be passed through the web API back
 to the attacker.

 Why Existing Tools Fail to Protect You
 Protecting from injection attacks is common functionality for WAFs and some API
 gateways since these tools can use signatures to pattern match and identify known
 injection types. The signatures that these tools use, however, need to be kept up to
 date in order to protect against the latest injection attacks. If these tools lack the
 latest signature updates they will miss new attack types. Unfortunately, signatures
 are often built for off the shelf web and application software packages including
 open-source projects like Drupal and Wordpress. Software vendors and open
 source web content management system �CMS� project owners will call out pitfalls
 of WAF signatures for covering the range of custom development or plugins in their
 respective ecosystems. Web CMS platforms also serve as development platforms.
 Custom code that development teams build within each respective ecosystem can
 look wildly different than what a WAF’s out of the box signatures are built for.

 WAF tuning discussions typically begin – or end – here, depending on your
 perspective. It can be difficult for many security teams to keep up with the rate of
 change of web pages, mobile apps and web APIs. The Internet is also riddled with
 WAF evasion techniques that help attackers avoid WAF pattern matching
 mechanisms, commonly regex or libinjection . The situation gets worse for API
 gateways, which don’t receive signature updates regularly if at all. API gateways
 often employ basic threat protection or message filters that look for known
 malicious characters in requests and responses, such as “ = “ or “ ‘ “ in the case of
 SQLi. This type of approach is often too basic for organizations since it catches
 only basic injection attacks and may break other system integrations.

 Another consideration is that WAFs focus on all web traffic, of which API traffic is
 only a subset and tangential focus. As a result, WAFs may be deployed with only a
 positive security model to enforce traffic against an API schema or specific HTTP
 traffic patterns. Rulesets such as injection protections may also not be applied to
 API traffic.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 21

https://github.com/0xInfection/Awesome-WAF#known-bypasses
https://portswigger.net/daily-swig/libinjections-sql-injection-defenses-cracked

 How Salt Prevents Injection Attacks
 Salt identifies attackers probing APIs with potentially malicious data through all
 vectors. Injection flaws can be exploited in many parts of a request, including
 headers, cookies, URL query parameters, and message body variables depending
 how other backend application components and systems are architected. Detecting
 injection flaws successfully and early requires that the solution analyze all API
 traffic and establish a baseline of typical API behavior. From the baseline, Salt can
 identify anomalous and potentially malicious data in an API request such as what is
 seen in injection attacks. Salt performs these features without the need for
 signatures or pattern matching, which eliminates the need to maintain
 configurations and signatures while ensuring that even injection attempts using the
 latest methods are identified and stopped.

 API9:2019 Improper Assets Management

 Description
 Maintaining a complete, up-to-date API inventory with accurate documentation is
 critical to understanding potential exposure and risk. An outdated or incomplete
 inventory results in unknown gaps in the API attack surface and makes it difficult to
 identify older versions of APIs that should be decommissioned. Similarly, inaccurate
 documentation results in risk such as unknown exposure of sensitive data and also
 makes it difficult to identify vulnerabilities that need to be remediated.

 Unknown APIs, referred to as shadow APIs, and forgotten APIs, referred to as
 zombie APIs, are typically not monitored or protected by security tools. Even known
 API endpoints may have unknown or undocumented functionality, referred to as
 shadow parameters. As a result, these APIs and the infrastructure that serve them
 are often unpatched and vulnerable to attacks.

 Potential Impact
 Attackers may gain unauthorized access to sensitive data, or even gain full server
 access through old, unpatched or vulnerable versions of APIs.

 Example
 Research conducted by Salt shows a common gap of up to 40% between manually
 created API documentation (or schema definitions) in the form of Open API
 Specification �OAS� vs. what is actually deployed in production APIs. These gaps
 fall into the following three categories:

 1. Shadow API Endpoints – API endpoints that are missing from the OAS or
 have no OAS at all. In the following example, Salt research found an
 additional 54 endpoints that were not included in the Swager or OAS

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 22

 documentation, and 12 of those undocumented endpoints were exposing
 sensitive PII data.

 2. Shadow Parameters – API endpoints known to exist but whose API
 documentation is missing many parameters. As a result, the API
 documentation does not cover the majority of the attack surface – in this
 research, API schema definitions listed just three parameters, but the Salt
 platform identified 102 parameters for the single API endpoint.

 3. Parameter Definition Discrepancies – in addition to many missing
 parameters, data types that lack needed details such as “String” instead of
 “UUID” or “DateTime” will leave APIs vulnerable. Message filters used by
 traditional security controls will allow any input through the API to be
 processed by the backend. These controls rely on a positive security
 approach and explicitly written rules and policies when enforcing requests
 against API schema definitions.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 23

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs and API gateways lack capabilities to
 continuously discover APIs at a granular level and monitor them for changes.
 These security controls only know what they are configured for, requiring API
 schema definitions to be imported in order to gain a view of the API
 environment. If documentation is missing or inaccurate, as is often the case for
 many security teams, these traditional security controls will have an inaccurate
 view of the API environment.

 How Salt Prevents Improper Asset Management
 Salt analyzes all API traffic and continuously discovers APIs. Salt Discovery
 includes the ability to identify all host addresses, API endpoints, HTTP methods,
 API parameters, and their data types including the identification and classification
 of sensitive data. Salt provides discovery on an ongoing basis to maintain an
 up-to-date catalog of the API environment and accurate API documentation even
 as new APIs are introduced and updates are made to existing APIs.

 API10:2019 Insufficient Logging & Monitoring

 Description
 Insufficient logging and monitoring combined with missing or ineffective integration
 with incident response, allows attackers to perform reconnaissance, exploit or
 abuse APIs, compromise systems, maintain persistence, advance attacks, and
 move laterally across environments without being detected. The longer an attacker
 is present in an environment the higher the likelihood the attack will result in a
 breach, brand or reputation damage, or some other negative impact to the
 company or its service.

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 24

 Potential Impact
 Without visibility over ongoing malicious activities, attackers have plenty of time to
 perform reconnaissance, pivot to more systems, and tamper with, extract or,
 destroy data.

 Why Existing Tools Fail to Protect You
 Traditional security controls like WAFs and API gateways provide limited logging,
 monitoring, alerting and incident response capabilities. These security controls
 alert based on every anomaly without the ability to decipher between benign and
 malicious abnormal behavior. This results in an overwhelming number of alerts that
 can be seen as “noise” by SOC and incident response teams, lead to SecOps
 fatigue and result in the organization missing high priority security incidents that
 turn into breaches.

 How Salt Prevents Insufficient Logging & Monitoring
 Salt monitors and analyzes all API activity and provides logging and incident
 response capabilities, such as feeding actionable security events into the
 organization’s security information and event management �SIEM�. By analyzing all
 API activity, Salt can differentiate between benign and malicious abnormal behavior,
 reducing false positives and low priority alerts. Salt also correlates event data to
 provide a consolidated view of attacker activity, consolidated alerts, and detailed
 attacker timelines to help accelerate incident response and forensic investigations.

 Conclusion: Protecting APIs from the OWASP API Security Top 10
 Threats
 Protecting APIs from the threats outlined in the OWASP API Security Top 10
 requires a new approach to security. Traditional methods of protecting web
 applications with only authentication, authorization, and encryption are not enough
 and traditional tools like API gateways and WAFs do little to stop the top threats
 targeting APIs. Likewise, not all elements of API security can be addressed in code,
 let alone tested for and validated pre-deployment.

 The Salt Security API Protection Platform secures the APIs at the heart of all
 modern applications. The platform collects API traffic across the entire application
 landscape and makes use of big data, AI, and ML to discover all APIs and their
 exposed data, stop attacks and eliminate vulnerabilities at their source. The Salt
 solution enables organizations to:

 ● Discover all APIs and exposed data.
 The Salt platform automatically inventories all APIs, including shadow and
 zombie APIs, across all application environments. Salt also highlights all
 instances where APIs expose sensitive data like Personally Identifiable
 Information �PII�. Continuous discovery ensures APIs stay protected even as

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 25

 environments evolve and change as a result of agile methodologies and DevOps
 practices.

 ● Stop API attackers.
 Pinpoint and stop threats to APIs with Salt's big data and patented artificial
 intelligence �AI� technology that baselines legitimate behavior and identifies
 attackers in real time, during reconnaissance, to prevent them from advancing.
 The platform correlates all activities back to a single entity, sends a single
 consolidated alert to avoid alert fatigue, and blocks the attacker – not just
 transactions.

 ● Improve API security posture.
 The Salt platform proactively identifies vulnerabilities in APIs even before they
 serve production traffic. The platform uses attackers like pen testers, capturing
 their minor successes to provide insights for dev teams while stopping
 attackers before they reach
 their objective.

 Salt Security – Securing your innovation

 Salt Security protects the APIs that form the core of every modern application. Its patented API Protection Platform is
 the only API security solution that combines the power of cloud-scale big data and time-tested ML/AI to detect and
 prevent API attacks. By correlating activities across millions of APIs and users over time, Salt delivers deep context with
 real-time analysis and continuous insights for API discovery, attack prevention, and shift-left practices. Deployed in
 minutes and seamlessly integrated within existing systems, the Salt platform gives customers immediate value and
 protection, so they can innovate with confidence and accelerate their digital transformation initiatives.

 Request a Demo today!
 info@salt.security
 www.salt.security

 WP�239�092622

 Salt I Protecting Against the OWASP API Security Top 10 with Salt Security I 26

http://www.salt.security/

 Securing your
 Innovation.

