

 API Security Evaluation Guide

 TABLE OF CONTENTS

 Why do we need more than application security, and why now? 1

 What should organizations look for in an API security offering? 3

 Design and architecture 3

 API and sensitive data discovery 5

 API attack detection 7

 API attack prevention and blocking 10

 API-centric incident response 11

 API vulnerability identification and remediation insights 13

 Conclusion 15

 Salt Security Platform 15

 Additional Reading 16

 Modern applications are built on APIs, and application security
 practices now heavily depend on API security practices. As an
 industry, the recognized approaches and tooling for securing
 traditional applications are fairly well understood. However,
 mitigating API a�acks differs due to a shift in where application
 logic resides as well as a de-coupling and de-emphasis on client
 front ends. Securing APIs requires consideration of many security
 domains including network, infrastructure, IAM, data, and not just
 application code. Organizations must evolve their API security
 strategy to protect their business, their users, and their data.

 With API attacks on the rise, and existing security technology proving to be
 ineffective at stopping API attacks, organizations need to take a new approach. Salt
 Security is providing this research to industry to improve awareness of what it takes
 to adequately secure APIs and how to evaluate a given API security offering. We
 also want to enable decision makers within organizations to vet vendor claims and
 map to security functionality that is necessary to protect their business.

 As with any new technology, organizations don't always know how to evaluate
 “good” and measure what features may be beneficial. You can use the information
 contained in this evaluation guide to help assess the quality of a respective vendor
 offering. We’ve organized the criteria into the following sections:

 ● Design and architecture
 ● API and sensitive data discovery
 ● API attack detection
 ● API attack prevention and blocking
 ● API-centric incident response
 ● API vulnerability identification and remediation insights

 We start with a brief overview on how the attack surface has changed and why a
 new approach is needed. Then each section provides the key aspects of that
 functional area and a list of critical functions to look for in a given offering. The
 guide wraps up with a conclusion and a brief overview of the Salt Security platform
 approach. We hope the information helps you evaluate API security platforms.

 Why do we need more than application security, and why now?

 Traditional application security approaches and tooling capture only a small portion
 of the range of potential API attack types, and they provide limited efficacy in

 Salt I API Security Evaluation Guide I 1

 detecting or blocking such attacks. Organizations hit a wall when attempting to
 integrate and operationalize traditional security tooling and process at scale, which
 inevitably leaves their APIs at risk.

 Complicating factors for the API landscape include:

 ● Acceleration of API creation to facilitate business and exchange data with
 customers as well as partner ecosystems

 ● Rapid development and release of APIs supported by agile development
 methodologies and DevOps practices

 ● Higher volume of APIs and distribution of them as a result of microservices
 architecture and cloud-native design patterns

 ● Evolution from XML and SOAP APIs which were largely internal to REST,
 GraphQL, and gRPC that are more publicly exposed

 ● Organization-specific API architecture and business logic implementation

 ● Advancing attacker methodologies where attackers circumvent access
 controls and abuse business logic, not just exploit vulnerabilities in code or
 deny service.

 ● Multiple front-end client types that make endpoint and client-side controls
 untenable

 ● Increasing privacy regulation governing collection of sensitive data and
 exposure of PII

 To address modern threats that exploit flaws in APIs, organizations are looking for a
 range of new capabilities – prevalent API attacks have revealed a particular need to
 identify:

 ● Sensitive data exposures that impact privacy
 ● Broken object level authorization �BOLA� attacks that result in privilege

 escalation
 ● Credential stuffing that results in account takeover �ATO�
 ● Enumeration and scraping attacks that lead to mass data leakage

 Organizations today support more APIs of various types and protocols than ever, all
 with varied levels of exposure. As a result, organizations face a massive, shifting
 attack surface. Traditional security approaches and mechanisms aren’t enough –
 we need a new approach.

 Salt I API Security Evaluation Guide I 2

 What should organizations look for in an API security offering?

 Any API security offering you consider should be built as a platform of capabilities
 and not a one-off tool or scanner. API security strategy demands a full lifecycle
 approach since security issues, vulnerabilities, logic flaws, misconfigurations, and
 more arise at different stages of design, development, delivery, and operation.

 Architecture matters. Any platform you are considering should leverage big data to
 collect and store large amounts of API telemetry, correlate API traffic, provide
 context, and power fast attack detection and response. The platform should also
 use AI/ML so that it can continuously extract useful, actionable signals for
 development, operations, and security teams. Time-in-market is another key
 consideration – since algorithms improve over time through training, and data sets
 are enriched by the network effect, with more users and API calls. When
 architected properly, such aggregated, anonymized data benefits all consumers of
 the platform while still preserving privacy.

 Based on Salt customer requirements, collective experience, and industry security
 best practices, we’ve defined the following design criteria and capability areas as
 critical for any API security offering that an organization may be considering:

 ● Design and architecture
 ● API and sensitive data discovery
 ● API attack detection
 ● API attack prevention and blocking
 ● API-centric incident response
 ● API vulnerability identification and remediation

 Subsequent sections detail the core capabilities that organizations should look for
 when evaluating a respective vendor offering. Criteria are numbered so they are
 easily referenceable, but this does not infer priority. Organizations have varying
 sets of business and security requirements, and some API security capabilities may
 be more or less important.

 Design and architecture

 Design and architecture of the API security offering should:

 ● Support heterogeneous environments and secure all types of APIs
 anywhere

 ● Avoid the use of additional client-side code, server agents, or network
 proxies

 Salt I API Security Evaluation Guide I 3

 ● Leverage cloud-scale data storage and analytics
 ● Use AI/ML to continuously analyze the organization’s unique API business

 logic

 Any API security offering you consider should be built with automation and
 cloud-scale capacity in mind. Realistically, this infers a cloud-native design, making
 use of cloud-born technologies under the hood such as auto-scaling infrastructure
 components, cloud storage, cloud analytics, containers, and serverless technology.
 This approach enables support for legacy and modern environments as your
 organization scales up and out with new architectures. No API security offering that
 deploys as a stand-alone, on-premises service can retain enough data necessary
 to inform baselines, drive analysis engines, and identify anomalous API traffic that
 indicates potential attack, privacy impact, or other type of incident.

 Key architecture attributes that an API security offering should exhibit include:

 1. Environment agnostic - the API security offering should support modern
 and legacy technologies regardless of where they are hosted. The offering
 should support integration into newer infrastructure like containers,
 Kubernetes, and service mesh, but it should also work in bare metal, virtual
 machine, and data center deployments. The offering should also be able to
 integrate with network elements like load balancers, API gateways, WAFs,
 and more. These integrations support distributed collection of API traffic
 across your enterprise architecture that invariably exists both on-premises
 and in cloud. The API security offering also needs to work in environments
 where traffic is encrypted since TLS is pushed readily as security best
 practice but has an unintended side effect of reduced security visibility.

 2. Independence from client-side code, server agents, and additional
 proxies - the API security offering should not require additional server
 agents or network proxies. Most organizations already have too many
 proxies, which complicates troubleshooting and availability. Agents also
 have a bad reputation for creating deployment headaches and reducing
 performance. These issues become more apparent as organizations move
 towards new design patterns like microservices architecture where low
 latency and high throughput are essential. The offering should also avoid
 the use of client-side code or controls to stop attacks. These come in many
 forms including CAPTCHAs, SDKs, libraries, or JavaScript in the traffic
 stream. These approaches can create issues with front end performance or
 user experience, and they also don’t work in direct API integration
 scenarios. Client-side controls are also defeatable by attackers.

 3. Cloud-based storage and analytics - the API security offering should make
 use of cloud-based storage and data analytics, oftentimes referred to more

 Salt I API Security Evaluation Guide I 4

 simply as Big Data. This approach is the only way to retain enough data
 necessary to inform baselines of API behaviors and consumption patterns,
 drive analysis engines, and identify anomalous events that are indicators of
 potential data loss, privacy impact, or other incidents. The large scale data
 collection and analysis at multiple points of your architecture and
 throughout the API lifecycle ultimately helps provide context for how your
 organization uniquely builds and integrates APIs as well as how those APIs
 are consumed.

 4. AI/ML based analysis - the API security offering should use AI/ML to
 analyze all the data and telemetry that are collected, produce meaningful
 signals, and inform security capabilities in the offering. Machine-assisted
 approaches are essential for powering detection and enforcement
 capabilities of any API security offering, such as determining where best to
 mitigate an API issue or what control is most appropriate. It may be more
 appropriate to revoke an attacker’s authenticated session than to enforce a
 blanket rate limit that could inadvertently impact legitimate users.
 Machine-assisted analysis also helps reduce high false positive rates that
 are far too common with traditional security tooling.

 API and sensitive data discovery

 API and sensitive API and sensitive data discovery features should:

 ● Work across hosting models, environment types, and enterprise
 architectures

 ● Support legacy and modern API protocols
 ● Include API metadata beyond basic IP address and host information
 ● Identify API communications where sensitive data types are accepted or

 transmitted

 API discovery and cataloging features support an organization’s ability to identify all
 of its APIs so that the organization can in turn monitor and protect them. The
 catalog that exists in the organization’s API management platform, if it uses one, is
 likely incomplete. Configuration management and asset management databases
 are either too stale or too far removed from API context.

 Some organizations attempt to repurpose logging, vulnerable assessment, or
 network traffic analysis tooling, but the importance of purpose-built tooling to
 automatically collect and organize API metadata can’t be overstated. While most
 existing scanning tools focus on IP address and host information, effective API
 discovery and cataloging must also include all appropriate API metadata such as
 API endpoints, API functions, path structures, message body structures, and more.

 Salt I API Security Evaluation Guide I 5

 Like all security domains, the old adage applies that you can only secure (or
 protect) what you know about. Discovery and cataloging also provides benefits
 beyond security and includes governance, compliance, and privacy.

 Core capabilities you should look for in an API security offering for discovery and
 cataloging include:

 1. Continuous, automated API discovery - any API security offering should be
 able to automatically collect data and metadata about APIs across
 environment types. This discovery capability should be based on actual
 traffic and not just schema definitions since there is often deviation
 between documented design and the actual API deployment within
 organizations. The security offering should also collect this data, correlate it
 and organize the catalog continuously since the API landscape constantly
 shifts as a result of modern application design, system engineering, and IT
 practices.

 2. Identification of shadow or undocumented APIs - any API security offering
 should be able to identify shadow APIs, also referred as unknown or
 undocumented APIs, that have flown under the radar of operations and
 security teams. This includes both shadow API endpoints as well as shadow
 API functions and parameters. An organization’s API inventory is more than
 the APIs that it mediates with API gateways or publishes within API
 management offerings. There is a large ecosystem of APIs that are inherited
 as part of acquisition, integration, and cloud-native design. API
 development may also be outsourced or offshored, worsening the
 documentation problem. Build and delivery of APIs into production may also
 be less formalized. All of these factors feed into the problem of shadow
 APIs and a large, unknown API attack surface for organizations.

 3. Identification of zombie or out-of-date APIs - any API security offering
 should be able to identify zombie APIs, also referred to as outdated or
 deprecated APIs. The life cycle of APIs inevitably results in multiple
 versions. However, old versions and old code of APIs often linger when
 building or operating APIs at scale. Organizations will often practice a type
 of version control with API keys, “restricting access” to old API versions by
 cycling out old API keys. In some cases, version control may even be as
 basic as adjusting request parameters which are controllable by the API
 caller. Zombie endpoints can contain buggy or vulnerable code, may expose
 excessive data or functionality, may no longer be monitored, and may lack
 production mitigations from other infrastructure. As a result, zombie API
 endpoints pose a significant risk to organizations and are often sought out
 by attackers.

 Salt I API Security Evaluation Guide I 6

 4. Identification of sensitive data - as part of the discovery functionality, any
 API security offering should be able to identify sensitive data types in API
 parameters and payloads as well as tag API endpoints appropriately. There
 is a large range of personally identifiable information �PII� and also other
 data types that are subject to regulation. This includes protected health
 information �PHI� as defined by the Health Insurance Portability and
 Accountability Act �HIPAA� and cardholder data as defined by the Payment
 Card Industry Data Security Standard �PCI DSS�. There are clear regulatory
 impacts to organizations when they inadvertently expose such sensitive
 data in API traffic. Newer privacy regulations such as General Data
 Protection Regulation �GDPR� and California Consumer Privacy Act �CCPA�
 are more expansive in their definitions of what constitutes private data and
 how organizations should protect such data. Failing to protect sensitive
 data can result in fees from regulatory bodies, severe brand damage, or lost
 customers.

 5. Identification of third-party API consumption - any API security offering
 should be able to identify third-party API consumption and distinguish it
 from first-party API traffic. Applications are pieced together by integrating
 services and data of multiple APIs, not all of which are hosted by the
 owning organization. Third-party API consumption includes cloud services
 such as Google, Facebook, Slack, Twitter, and many others. It is also a
 byproduct of digital supply chains and partner ecosystems. Third-party API
 consumption is different from the more well-understood pattern of
 employee consumption of cloud SaaS services where CASB is typically the
 security control of choice. Modern design patterns result in a spiderweb of
 API interconnectedness, and it is common to see direct API communication
 and machine identities consuming data and functionality of third-party APIs.
 As a result, identification, behavior analysis and anomaly detection require
 different techniques than what is provided by CASB offerings.

 API a�ack detection

 API attack detect features should:

 ● Identify attacks against APIs quickly and early in attacker reconnaissance
 phases

 ● Support API schema analysis for design-time detection but also work
 independently of it

 ● Correlate anomalous API behaviors and attacker campaigns
 ● Work independently of traditional threat intelligence and malicious IP

 address feeds

 Salt I API Security Evaluation Guide I 7

 API attack detection is the ability of an offering to identify API attacks quickly and
 early. Traditional approaches with WAFs and API gateways fail to keep up due to
 their limited view of the API ecosystem. WAFs and API gateways focus on
 transactions in isolation and cannot see a complete API sequence to provide full
 context. API gateways, including those that exist as components of API
 management and iPaaS, are also primarily API mediators and access control
 enforcers that may already be overloaded in the enterprise architecture. Some
 organizations may attempt to repurpose IPS and NGFW for API security, but these
 are even less suited for the task of API attack detection since they sacrifice any
 application-layer or API focus for broad, multi-protocol attack detection.

 Schema-dependent API security offerings fail at detecting certain types of API
 attacks, such as the ever prominent BOLA. There are inherent limitations with
 restricting analysis to only API documentation and schema definitions at the
 expense of also examining traffic in runtime. It’s also possible to publish an API
 without any schema, schema definitions need not be granular such as with integer
 fields, and most organizations experience API drift as they ramp up with building,
 integrating, publishing, and operating APIs.

 Core capabilities you should look for in an API security offering for API attack
 detection include:

 1. Attacker correlation - the API security offering should be able to aggregate
 and correlate API traffic and associate it to attacker campaigns where
 applicable. Traffic collection seems like a simple task until you consider the
 volume of data that must be collected at a high frequency rate and
 continuously analyzed. Gathering such telemetry can only be supported
 with cloud scale data storage and log streaming (i.e., Big Data). Analyzing
 all that data at scale to unearth useful signals can only be accomplished
 with machine assistance (i.e., ML and AI�. An API security offering should be
 able to correlate attack behavior per source IP address, per user ID, and per
 session ID and make that information readily available to API and security
 teams within the organization.

 2. Static metadata independence - the API security offering should not be
 dependent on static data sources such as threat intelligence �TI� feeds or
 API schema definitions. TI feeds largely contain IP address and host
 information for known malicious entities on the internet. Organizations using
 traditional security controls often make use of these feeds as input into IP
 address allow and deny lists. Unfortunately, while they may be helpful for
 mitigating certain DDoS type attack patterns from botnets, they contain
 very little useful context for application security, let alone API security. In
 even basic automated attacks, attackers cycle through IP addresses or spin
 up compute within trusted cloud service providers to evade these basic

 Salt I API Security Evaluation Guide I 8

 types of traffic management and network access controls. API schema
 definitions are often incomplete if not entirely absent in many organizations.
 If they exist, security teams may not have visibility into them depending on
 where the organization is at with DevOps maturity and siloed IT teams. TI
 feeds and schema definitions contain very little information that is useful for
 understanding the unique business logic of each organization.

 3. Behavior analysis and anomaly detection - any API security offering be
 able to programmatically parse API business logic and behaviors in order to
 assess impacts to an organization’s API security posture. While build time or
 pre-deployment checks can be valuable to overall security, a deeper
 contextual understanding of APIs can only be accomplished through
 runtime analysis. An API security offering should exhibit user and entity
 behavior analytics �UEBA� traits. UEBA-like capabilities are commonly found
 in some CASBs or SIEMs. In the case of API security, such anomaly
 detection capabilities must be tailored to different use cases and for APIs
 specifically. The anomaly detection should be able to detect a wide range
 of API abuses and automated attacks where API consumption patterns
 deviate from the baseline, or “normal.”

 4. Early attacker identification - the API security offering should not only be
 able to quickly and continuously detect API attacks, it should also be able to
 do it early. Typically, attackers go through an early reconnaissance phase as
 they passively and stealthily probe their target. This may be through
 throttled and distributed port scans to find exposed services and APIs.
 Attackers also commonly reverse engineer client-side application code,
 usually browser-based JavaScript or mobile binaries, to understand how
 backend APIs function and how to communicate with them. Such passive
 analysis techniques evade most detections since they typically appear as
 legitimate traffic. The API security offering should be able to detect subtle
 variations in normal consumption patterns that result from automation
 scripts and reverse engineering tools employed by attackers.

 API a�ack prevention and blocking

 API attack prevention and blocking features should:

 ● Stop API attacks before attackers can exfiltrate data or do damage
 ● Pair with attack detection capabilities so that API security is not passive or

 reactive
 ● Prevent security issues and misconfigurations from making their way to

 production
 ● Integrate with existing proxies in the enterprise for enforcement

 Salt I API Security Evaluation Guide I 9

 Application security tooling such as static or dynamic analyzers and other forms of
 pre-prod scans help identify only a limited subset of API security issues. These
 tactics cannot stop attackers from exploiting those vulnerabilities. Runtime
 protection for APIs is necessary to prevent and stop API attacks. Unfortunately,
 some API security offerings provide detection only, with no ability to prevent or
 stop attacks, which creates market confusion.

 Core capabilities you should look for in an API security offering for attack
 prevention include:

 1. Stop attacks that exploit OWASP API Security Top 10 �2019� issues - any
 API security offering should be able to stop attackers that target the
 exploitable issues defined in the OWASP API Security Top 10. Most critical
 are BOLA attacks, previously referred to as insecure direct object reference
 �IDOR� attacks. An offering should be able to detect attacks that target
 authentication as well as the other type of authorization attack, broken
 function level authorization . An offering should also be able to detect
 excessive data exposure , lack of resource or rate limiting , security
 misconfigurations , injection flaws , and mass assignment flaws . While top 10
 items like improper assets management and insufficient logging &
 monitoring aren’t directly exploitable, attackers do target APIs that aren’t
 adequately inventoried or monitored by organizations.

 2. Block malicious requests while learning and profiling - any API security
 offering should be able to block or mitigate API attacks while it is profiling
 API traffic and learning the organization’s unique business logic powered by
 APIs. There are a number of API attacks that can be detected and stopped
 regardless of how an organization designs and codes its APIs. This at a
 minimum includes injection-style attacks that follow well-defined patterns
 like XSS, SQL injection, XML injection, and JSON injection. It also includes
 excessive API consumption where API callers are consuming APIs or data at
 high volumes. Traditional rate limiting and message filtering mechanisms
 that you would expect to find in API gateways or WAFs are often too static,
 too operationally complex, or not well-maintained by the vendor.

 3. Stop credential stuffing and brute forcing attacks - any API security
 offering should be able to stop these automated attacks that seek to
 achieve account takeover �ATO�. ATO is a risk for all industries and any
 organization that exposes an API where authentication and authorization
 are required. Organizations will often invest heavily in strong access
 controls only to find attackers are finding ways in by pilfering credentials.
 Brute force attacks are the more well understood pattern, where attackers
 try many sequences of usernames and passwords in an attempt to find

 Salt I API Security Evaluation Guide I 10

https://salt.security/blog/owasp-api-security-top-10-explained
https://salt.security/blog/api2-2019-broken-user-authentication
https://salt.security/blog/api5-2019-broken-function-level-authorization
https://salt.security/blog/api5-2019-broken-function-level-authorization
https://salt.security/blog/api3-2019-excessive-data-exposure
https://salt.security/blog/api4-2019-lack-of-resources-rate-limiting
https://salt.security/blog/api7-2019-security-misconfiguration
https://salt.security/blog/api7-2019-security-misconfiguration
https://salt.security/blog/api8-2019-injection
https://salt.security/blog/api7-2019-security-misconfiguration
https://salt.security/blog/api9-2019-improper-assets-management
https://salt.security/blog/api10-2019-insufficient-logging-monitoring
https://salt.security/blog/api10-2019-insufficient-logging-monitoring
https://salt.security/blog/api8-2019-injection
https://salt.security/blog/api4-2019-lack-of-resources-rate-limiting

 working credentials. Credential stuffing is a newer pattern, where attackers
 harvest credentials from prior breaches and repurpose them in new
 automated attacks against other organizations. Credential stuffing is often
 successful because username and password re-use is commonplace. Even
 in cases where additional authentication factors are used, such as a 2FA
 authenticator or SMS challenge, attackers will combine credential stuffing
 with brute forcing to overcome these stronger access control approaches.

 4. Stop application-layer denial of service �DoS� attacks - any API security
 offering should be able to stop application-layer DoS. DoS and distributed
 DoS �DDoS� are often viewed from the lens of excessive traffic or request
 rates, or volumetric attacks. The volumetric attack pattern is only one form
 of DoS and DDoS. It is also readily addressed by large scale CDNs and
 cloud service providers that can absorb and mitigate such high volumes of
 traffic. The more nefarious and stealthy form of DoS is application-layer
 DoS, or layer 7 DoS. Application-layer DoS is more difficult to detect and
 stop because of application and API uniqueness. Many offerings and
 service providers will mitigate layer 3 and 4 DoS and DDoS readily but leave
 an organization exposed for layer 7 DoS. A given security tool must analyze
 the organization’s APIs and API traffic to effectively prevent such attacks.

 API-centric incident response

 API-centric incident response features should:

 ● Integrate with existing work streams and dev and SecOps tooling
 ● Provide custom views and workflows for many IT personas, not just security
 ● Address many incident types including privacy impacts and availability

 problems
 ● Support integration with the organization’s ITSM, SIEM, and SOAR

 implementations

 Attacks are inevitable and organizations must deal with threat actors on multiple
 fronts. External or public APIs are prime targets, but so too are internal or private
 APIs where security controls may be more lax in favor of protection provided by
 traditional perimeter controls. While API protection is key to defending your APIs in
 runtime, the organization’s ability to respond in the event of an attack is just as
 critical. Not all API-related risks are attack-oriented either where concern may be
 data exfiltration or scraping by an attacker (i.e., a data breach). Incidents
 encompasses many unforeseen events including unintentional data exposure,
 privacy impacts, and availability issues.

 Salt I API Security Evaluation Guide I 11

 Any API security offering you consider should support basic alerting methods. Email
 and SMS are tried and true notification mechanisms that may appear in
 procurement checklists and RFPs. More importantly though, an API security
 offering should provide integrations with the organization’s pre-existing IT systems
 and workflows. Organizations need modern notification and response techniques to
 shorten mean-time-to-detect an incident and mean-time-to-repair. Look for
 integrations and automation that support your already overwhelmed SOCs or
 augment what your MSSP is able to provide. Data feeds into the organization’s SIEM
 are a given, though it should be done intelligently to provide useful signals. An API
 security offering should also support newer SecOps capabilities like SOAR.

 Core capabilities you should look for in an API security offering for API attack
 response include:

 1. Intelligent ITSM, SIEM and SOAR integration - the API security offering
 should provide integration into these commonly found IT and SecOps
 systems. Integration should not be limited to a basic “log feed” or “data
 dump.”. Rather, the API security offering should intelligently prioritize
 events, provide actionable security alerts, and support the work streams of
 a modern SOC and IT workforce. The offering should be able to trigger
 workflow within external SIEM and SOAR offerings, such as Splunk and
 Demisto. It should also be able to trigger workflow within external ITSM for
 ticketing, such as ServiceNow and ITSM Atlassian Jira Service Desk.

 2. Customizable response actions - rather than depending on a native
 integration, the API security offering should provide APIs or webhooks to
 integrate with a wider range of external IT system systems. Integration
 should support customizable response actions, and complex, multi-party
 workflows.

 3. Tailored for multiple IT personas - the API security offering should provide
 a role-based access control model (and that can be integrated with external
 IAM� that allows for varied levels of view and control. It should be possible
 to delegate functions to different users or groups of users. As an example,
 the organization would likely want to expose any remediation insights to
 development teams, but only for those API endpoints they are responsible
 for. The UI and UX should be customizable for various roles so that only
 desirable data and functionality is presented.

 Salt I API Security Evaluation Guide I 12

 API vulnerability identification and remediation insights

 API vulnerability identification and remediation insights features should:

 ● Check for a wide spectrum of API security issues, misconfigurations, and
 vulnerabilities

 ● Expand detection beyond known vulnerabilities
 ● Support checks that can be triggered in development, build, and runtime

 phases
 ● Run continuously and automatically for the entire lifecycle of APIs

 Traditional vulnerability scanning is focused on finding known vulnerabilities in
 published software or hardware. Typically, this results in flaws or misconfigurations
 that map to CVE IDs. Oftentimes, there are simply too many of these scan results to
 act on in a timely fashion, which has plagued vulnerability management programs
 for decades and fueled a lot of the desire to “ shift-left .” Some CVE IDs may not be
 fixable since it involves third-party code, and some flaws may not even be
 exploitable depending if the relevant vulnerable code is reachable within your
 organization’s unique application design and serving architecture.

 In the world of custom software development and custom API work, CVEs lose
 relevance beyond third-party dependency checking. Organizations frequently
 source software from commercial vendors and open-source projects, and that
 componentry may contain latent vulnerabilities. However, there is also a wide
 spectrum of design flaws, software weaknesses, business logic flaws, and more
 that do not map neatly to CVE IDs. These are unknown vulnerabilities in
 unpublished software, and responsibility lies with the organization that created the
 code or integrations to fix a given issue. A security fix may not always be
 code-level, since it may not be technically possible to do so, it may not be feasible
 to produce a code fix in a timely manner, or it is more practical to mitigate through
 other infrastructure components.

 Core capabilities you should look for in an API security offering for API vulnerability
 identification and remediation include:

 1. API vulnerability and weakness identification - the API security offering
 should use a combination of techniques to assess the security of the APIs
 that the organization hosts, integrates and consumes (i.e., third-party API
 consumption). The offering should passively analyze API traffic that flows
 through numerous points of enterprise architecture on and off-premises,
 and it should analyze API schema definitions when available to identify

 Salt I API Security Evaluation Guide I 13

https://content.salt.security/whitepaper-limits-of-shift-left.html

 areas of API weakness that should be remediated by development (i..e,
 code a fix) or operations teams (i.e., mitigated by infrastructure). Any API
 security offering should also be able to analyze traffic in pre-production
 environments to limit the risk of incidents in production environments or
 data exposure for production users.

 2. Remediation guidance tailored to developer and operations perspectives
 - the API security offering should provide remediation guidance focused on
 code-level fixes for development perspectives as well as infrastructure
 configurations for operations perspectives. Issues should be mapped to the
 OWASP API Security Top 10 where appropriate, but technical details should
 not be limited to just security context or written for security audiences.

 3. Integration with external defect tracking - the API security offering should
 provide basic remediation tracking for identified issues, but more
 importantly, it should integrate with external defect tracking systems in
 order to support pre-existing security and development workflows for
 remediation. Defect tracking may be handled in external DevOps solutions,
 such as Azure DevOps or Atlassian Jira. Defects may also be tracked in
 external ITSM or vulnerability management �VM� platforms depending on
 the organization’s security program.

 4. Code repository, build system, and delivery system integration - the API
 security offering should provide a mechanism to integrate with
 development, build, and release systems. This capability may come through
 version control system integration and git-based code repositories to
 statically analyze API code or schema definitions. It may also be through
 build scripts or CI/CD integration to dynamically analyze APIs in runtime in
 pre-production or production environments. It should also be possible to
 pass or fail builds based on what the API security offering finds. Ideally,
 integration is provided via API, webhook, or native integration with the
 relevant build system, but command line invocation may be an alternative.

 Conclusion

 Salt Security is providing this research to industry to improve awareness of what it
 takes to adequately secure APIs and provide guidance on what to look for in a given
 API security offering. We want to enable decision makers within organizations to
 filter vendor claims and map to necessary security functionality to protect their
 business. Your organization may be vulnerable if it is relying on some of the
 traditional approaches like application security testing, traffic management or API
 threat protection from gateways and WAFs. API context matters greatly. Traditional
 approaches might check off some API security features but not all. Application

 Salt I API Security Evaluation Guide I 14

 security testing tools can’t surface business logic flaws. WAFs and API gateways
 focus on transactions in isolation rather than analyzing complete API sequences to
 detect business logic abuse.

 Underlying design and architecture of an API security offering matters. Any offering
 you are considering should be architected as a platform and address the full
 lifecycle of APIs to secure them appropriately. API security cannot be packaged as
 a stand-alone tool or scanner due to the stages at which security and privacy
 issues manifest themselves. A given problem may never result from the code of an
 API. Rather, it may be your configuration or implementation of that API that results
 in a security or privacy risk. It may also be an unintended API design as part of a
 complete system that allows for business logic abuse by attackers.

 The information in this evaluation guide is derived from an extensive RFP toolkit we
 have built and provide to potential customers as part of sales engagements. You
 can contact us at any time for further information or a demo of the Salt Security API
 Protection Platform.

 Salt Security Platform

 Only Salt Security delivers the context you need to protect your APIs across build,
 deploy, and runtime phases. We combine complete coverage and an ML/AI-driven
 big data engine to provide that context to show you all your APIs, stop attackers
 during the early stages of an attempted attack, and share insights to improve API
 security posture.

 The Salt approach
 Salt deploys in minutes and automatically discovers all your APIs and where they
 expose data, pinpoints and blocks attackers, and provides remediation insights for
 dev teams.

 Our advantages derive from our C�3A Context-based API Analysis Architecture –
 with coverage across all your app environments and our big data engine powered
 by our time-tested ML and AI algorithms.

 Complete coverage
 We collect all your API traffic – across load balancers, API gateways, WAFs,
 Kubernetes clusters, cloud VPCs, and app servers - to dynamically provide a full
 inventory. We deploy with no app or network changes and require no configuration
 or tuning.

 Salt I API Security Evaluation Guide I 15

 AI-powered big data engine
 Every one of your APIs is unique. Salt applies ML and AI in our big data engine to
 baseline your APIs and isolate anomalous behavior, differentiating between
 changes to APIs and malicious activity. By applying the context we learn, we can
 avoid false positives.

 Context-based analysis
 Salt combines our complete coverage and big data engine to discover all your APIs,
 see the sensitive data they expose, find and stop attackers, and capture insights
 for development teams to improve your API security posture.

 Additional Reading

 Securing APIs – It’s Different Than Securing Apps

 3 Reasons You Might Be Failing at API Security

 How Shift-Left Extremism is Harming your API Security Strategy

 Stopping API Attacks: Columbo, Correlation, and Context

 Is OAS Enough For API Security?

 Extending our Lead in API Security – Augmenting our “Shift Left” Features

 Salt Security – Securing your innovation

 Salt Security protects the APIs that form the core of every modern application. Its patented API Protection Platform is
 the only API security solution that combines the power of cloud-scale big data and time-tested ML/AI to detect and
 prevent API attacks. By correlating activities across millions of APIs and users over time, Salt delivers deep context with
 real-time analysis and continuous insights for API discovery, attack prevention, and shift-left practices. Deployed in
 minutes and seamlessly integrated within existing systems, the Salt platform gives customers immediate value and
 protection, so they can innovate with confidence and accelerate their digital transformation initiatives.

 Request a Demo today!
 info@salt.security
 www.salt.security

 WP�204�092622

 Salt I API Security Evaluation Guide I 16

https://salt.security/blog/securing-apis-its-different-than-securing-apps
https://salt.security/blog/3-reasons-you-might-be-failing-at-api-security
https://salt.security/blog/how-shift-left-extremism-is-harming-your-api-security-strategy
https://salt.security/blog/stopping-api-attacks-columbo-correlation-and-context
https://salt.security/blog/is-oas-enough-for-api-security
https://salt.security/blog/extending-our-lead-in-api-security-augmenting-our-shift-left-features
http://www.salt.security/

 Securing your
 Innovation.

