
 Salt Security in a
 DevSecOps Model
 WHITE PAPER

 Salt Security in a DevSecOps Model

 TABLE OF CONTENTS

 Overview 3

 DevSecOps Challenges in Securing APIs 3

 Keeping API documentation up to date before and after deployment to
 production, despite frequent API changes as part of rapid CI/CD 3

 Ensuring that APIs about to be released to production meet security requirements 4

 Comprehensive API Protection in production despite frequent API
 changes as part of rapid CI/CD 5

 Streamlined communications between security and development regarding
 API vulnerabilities in production 5

 Integrating API security into existing automated processes and ecosystem 6

 Protecting both external and internal APIs across environments and
 development frameworks without sacrificing speed or protection 7

 Maintaining compliance and privacy regulations �GDPR, CCPA� despite
 frequent API changes as part of rapid CI/CD 7

 Summary 9

 Appendix A 10

 Securing APIs is made more difficult by the ramifications of today’s
 DevOps processes. To help with the task of protecting API-based
 applications, organizations can embrace the tenets of DevSecOps
 to meet the goals of speed, efficiency, and security.

 The following summaries capture the complications that rapid CI/CD
 can introduce into securing APIs as well as the ways in which the
 Salt Security API Protection Platform can mitigate those
 challenges:

 Challenge Salt Security

 Keeping API documentation up
 to date at all times

 Automated and continuous discovery to ensure complete
 API coverage and accurate documentation throughout the
 entire CI/CD pipeline

 Ensuring APIs to be released to
 production meet security
 requirements

 Ability to identify and provide detailed security insights
 into security gaps and risks while in the staging
 environment

 Providing comprehensive
 protection of APIs in production

 Automatic and comprehensive protection against all
 OWASP API Security Top 10 threats and other risks,
 leveraging our patented technology that is not dependent
 upon OAS, signatures, or configuration to detect and
 prevent API attacks

 Streamlining communication
 between security and dev teams
 throughout the entire CI/CD
 pipeline

 Ability to integrate with DevOps systems such as Jira to
 streamline communication about API security gaps

 Integrating API security into
 existing automated processes
 and ecosystems

 Using the Salt integrations to send alerts to incident
 response teams, block attackers using existing
 infrastructure, push important events to SIEMs, for
 example

 Protecting all APIs across all
 environments with consistent
 tools and processes

 Ability to protect both external and internal APIs by fitting
 seamlessly into every environment, including any cloud
 provider and on-prem environments, without
 dependencies on specific technology stacks

 Ability to maintain compliance
 and privacy regulation
 requirements

 Automated discovery of PII and sensitive data throughout
 the CI/CD pipeline to ensure an API change does not
 violate existing compliance and privacy regulation
 requirements, with no need for manual auditing

 Salt I Salt Security in a DevSecOps Model I 1

 Overview

 The goal of DevSecOps is to introduce security measures earlier in the Software
 Development Life Cycle �SDLC� while maintaining the high velocity of releases and
 rapid application innovation essential to business transformation today.

 A great DevSecOps model allows fast and smooth deployment to production while
 meeting all security requirements, automates remediating security gaps as much as
 possible to ensure speed, and prevents deployment to production when security
 gaps exist while providing details on how to remediate the problem and complete
 the build.

 Applying DevSecOps principles to the process of securing APIs is challenging. In
 the next section, we will cover these challenges and describe how Salt Security
 simplifies the process and helps ensure your organization will meet both its security
 and development goals.

 DevSecOps Challenges in Securing APIs

 Keeping API documentation up to date before and after deployment
 to production, despite frequent API changes as part of rapid CI/CD

 ● Challenge
 Accuracy of documentation such as OAS is critical to help security teams
 understand and assess the risk of APIs and exposure of data and ensure no
 unknown attack surface exists. Research conducted by Salt Security shows
 that a gap of 40% is common between a manually created OAS and what’s
 really deployed, in terms of the number of APIs documented and the level of
 detail captured in the documentation vs. what the Salt platform reveals in the
 discovery phase.

 ● Salt Security
 The solution can be deployed in both staging and production environments to
 ensure OAS files are up to date at all times.

 In staging environments, Salt Security enables the ingestion of OAS files and
 provides a complete analysis of all missing elements such as missing API
 endpoints, missing parameters, discrepancies with parameter definition, and
 other factors.

 | Note: see Appendix A for examples of this analysis.

 Salt I Salt Security in a DevSecOps Model I 2

 In production environments, Salt Security monitors all APIs in real time to detect
 any new APIs as well as changes to existing APIs. In the event an existing API is
 changed or a new API has been deployed without going through the “official”
 process, Salt will detect the change or addition and alert security teams. Such
 events often happen when urgent patches get deployed or old versions remain
 running alongside new versions.

 Salt Security will also reduce the API attack surface by detecting any
 deprecated “Zombie APIs” that need to be removed from the production
 environment.

 Ensuring that APIs about to be released to production meet
 security requirements

 ● Challenge
 To prevent the release of vulnerable APIs, organizations must analyze APIs
 deployed to staging and detect any security risks or gaps that need to be
 addressed prior to deploying to production. Many of these security risks and
 gaps require deep analysis of API traffic including how the APIs were
 implemented. Manual review is both time consuming and error prone and slows
 down the CI/CD process for every release version.

 Organizations need the ability to detect security risks and gaps (e.g., never
 expired tokens, overly detailed errors, exposure of sensitive data) that cannot
 be detected by OAS-based analysis or static analysis tools.

 ● Salt Security
 Security Posture Insights tickets are generated in staging environments for any
 potential risk or issue based on analyzing legitimate test traffic. Our big data
 and AI functions as the “API security expert” in staging, to ensure vulnerabilities
 in APIs are identified and remediated before deploying to production.

 Security Posture Insights include new sensitive data exposed in URLs, new
 endpoints exposing sensitive data, detailed errors that share sensitive
 information, never expired tokens, and more.

 | example: a JWT or Authorization token is returned in a response where it
 should not be returned

 Salt I Salt Security in a DevSecOps Model I 3

 Comprehensive API Protection in production despite frequent API
 changes as part of rapid CI/CD

 ● Challenge
 Constant changes in APIs and applications make it difficult to provide accurate
 and comprehensive protection. As APIs change at a rapid pace, security tools
 can retain an “old” view of the API and gaps in protection, which can lead to
 either many false positives or inadequate protection. Any security solution that
 requires manual human verification of OAS files before and after deployment to
 production will not work at the speed required by DevSecOps.

 Security tools must continuously have an up-to-date view of APIs to provide
 proper protection.

 ● Salt Security
 Many customers deploy new API versions daily or weekly as part of their CI/CD
 process. The Salt Security solution automatically adapts its baseline of
 legitimate normal behavior for each new API and classifies any deviation or
 anomaly into clear attack cases to allow automated blocking of attackers early
 during their process of reconnaissance.

 Salt Security is the only company with patented technology to detect and
 prevent API attacks using Big Data and AI. With Salt Security, organizations
 avoid the need for any manual configuration of the security platform – instead,
 it leverages AI to automatically distinguish between legitimate frequent API
 changes and real malicious anomalies to ensure comprehensive API protection
 at all times.

 Streamlined communications between security and development
 regarding API vulnerabilities in production

 ● Challenge
 Identifying and remediating vulnerabilities efficiently in production is just as
 critical as doing so while APIs are still in staging – in fact, one could argue it’s
 more critical to ensure their security in production environments because that’s
 when attackers can exploit their vulnerabilities. After a vulnerability is found,
 tickets must be routed to the appropriate team or developer with the right level
 of detailed insights to establish the proper priority and ensure quick
 remediation.

 Salt I Salt Security in a DevSecOps Model I 4

 ● Salt Security
 Use attacker activity as penetration testing efforts that yield insights into where
 vulnerabilities exist in APIs. After the Salt Security platform blocks an attacker, it
 sends insights learned from reconnaissance activity through ticketing systems,
 such as Jira or ServiceNow, to the appropriate development team for
 remediation. Details include where in the API a vulnerability exists, what normal
 behavior is for the API, how the attacker tried to manipulate the API, and how
 the application responded. These insights provide needed details to help
 development teams prioritize and efficiently eliminate vulnerabilities in the API.

 Integrating API security into existing automated processes and
 ecosystem

 ● Challenge
 Organizations must balance the competing priorities of quick and efficient
 development and delivery of code with the need to release secure applications
 to production. Fitting into existing application delivery tools and workflows is
 essential to ensure that goals are met for both security and development
 teams without impacting the rate of application delivery.

 To fit into the DevOps workflows, security systems must integrate with existing
 tools such as ticketing systems and SIEMs.

 ● Salt Security
 A rich and flexible Integration Engine allows exporting any data or event to
 any other solution using webhooks and APIs. Organizations can use this
 integration to:

 ● Block attackers with API gateways, load balancers, or other devices
 ● Send alerts to any internal systems such as Splunk, QRadar, or Elastic
 ● Report security insights to internal systems including PagerDuty,

 ServiceNow, Zendesk, or Splunk
 ● Report on API vulnerabilities to any internal ticketing system such as Jira or

 ServiceNow
 ● Report API discovery events such as new APIs, new PII exposure, and API

 changes to any internal systems

 Salt I Salt Security in a DevSecOps Model I 5

 Protecting both external and internal APIs across environments and
 development frameworks without sacrificing speed or protection

 ● Challenge
 Development teams today run multiple development frameworks and a variety
 of tech stacks. It’s not practical for organizations to deploy different security
 tools across all of those environments. Security solutions must straddle those
 different environments effectively and must not have dependencies on specific
 development frameworks to operate. They must also be able to protect legacy,
 current, and future APIs.

 ● Salt Security
 The platform’s flexible architecture can collect data from any environment
 (cloud and on-premises) with a broad set of integrations. The Salt Security
 solution does not require any changes to application code and needs only a
 copy of API traffic, which ensures the solution is completely agnostic to
 software frameworks (e.g., different technologies and development kits). In
 addition, the solution works with APIs that do not have or can-not support OAS
 files such as non-RESTful APIs, SOAP APIs, traditional APIs (e.g., URL�Encoded
 based), and legacy applications with no proper documentation, for example.

 As a result, organizations can apply the Salt Security platform to any
 environment and to any API.

 Maintaining compliance and privacy regulations (GDPR, CCPA)
 despite frequent API changes as part of rapid CI/CD

 ● Challenge
 Maintaining compliance and data privacy (e.g., GDPR, CCPA� is challenging in
 CI/CD environments, because every API deployment, update, or change can
 require a change in the organization’s privacy policy. For example, a developer
 can add a parameter of a user’s private email address in a version release
 without the compliance team knowing it.

 Compliance and privacy regulations demand that organizations map all
 sensitive data (e.g., private data or PII� within the environment and deploy
 proper controls to delete data as necessary. In addition, any sensitive data
 organizations collect or share with third-party vendors should be part of the
 privacy documentation.

 Organizations need a mechanism to detect any changes or new sensitive data
 and PII exposure as early as staging, before any API is deployed to production.

 Salt I Salt Security in a DevSecOps Model I 6

 In addition, organizations also need the ability to monitor for new sensitive data
 in production.

 ● Salt Security
 All sensitive data and PII is automatically mapped to enable detection of any
 new sensitive data being introduced in environments, from staging to
 production. This approach ensures and validates that API changes are not
 collecting new sensitive data from consumers, exposing new information, or
 sharing sensitive data with third-party vendors without the security team’s full
 awareness.

 If no new sensitive data or PII exposure is detected, the Salt Security platform
 will enable the release to progress to production, keeping the deployment
 process smooth while also keeping legal teams and auditors happy.

 Salt I Salt Security in a DevSecOps Model I 7

 Summary

 The significant increase in the use of APIs, along with the special risks they pose,
 create new challenges for security teams, challenges compounded by the speed of
 DevOps practices. By embracing the tenets of DevSecOps and integrating security
 throughout all steps of the API lifecycle, organizations meet security requirements
 without hindering the speed and efficiency of application development that
 DevOps enables. Visit https://salt.security/demo/ to see how the Salt Security API
 Protection Platform can help you innovate faster with APIs while still protecting your
 data and services.

 Salt I Salt Security in a DevSecOps Model I 8

https://salt.security/demo/

 Appendix A
 Accuracy of documentation such as OAS is critical to help security teams
 understand and assess the risk of APIs and exposure of data. Accurate
 documentation also helps to ensure there are no shadow APIs, introducing
 unrealized attack surface. Research conducted by Salt Security shows a common
 gap of up to 40% between the manually created OAS vs. what’s actually deployed
 in the APIs. These gaps fall into the following three categories:

 1. Shadow API Endpoints – API endpoints that are missing from the OAS. In the
 following example, Salt Security research found an additional 54 endpoints that
 were not included in the Swager/OAS documentation, and 12 of those
 undocumented endpoints were exposing sensitive PII data.

 2. Shadow Parameters – API endpoints known to exist but whose documentation
 is missing many parameters. As a result, the documentation does not cover the
 majority of the attack surface – in this research, documentation listed three
 parameters, but the Salt Security platform identified 102 parameters.

 Salt I Salt Security in a DevSecOps Model I 9

 3. Parameter Definition Discrepancies – in addition to many missing parameters,
 data types that lack needed details such as “String” instead of “UUID” or
 “DateTime” will make APIs vulnerable, since any input will be processed.

 Salt Security – Securing your innovation

 Salt Security protects the APIs that form the core of every modern application. Its patented API Protection Platform is
 the only API security solution that combines the power of cloud-scale big data and time-tested ML/AI to detect and
 prevent API attacks. By correlating activities across millions of APIs and users over time, Salt delivers deep context with
 real-time analysis and continuous insights for API discovery, attack prevention, and shift-left practices. Deployed in
 minutes and seamlessly integrated within existing systems, the Salt platform gives customers immediate value and
 protection, so they can innovate with confidence and accelerate their digital transformation initiatives.

 Request a Demo today!
 info@salt.security
 www.salt.security

 WP�243�092622

 Salt I Salt Security in a DevSecOps Model I 10

http://www.salt.security/

 Securing your
 Innovation.

