
1. Introduction

The API Security Landscape
APIs are the backbone of modern digital interactions, acting as the connectors for 
microservices, mobile apps, partner integrations, and internal systems. While their adoption 
drives agility and innovation, APIs have become an attractive target for attackers. 
API-centric architectures process sensitive data—customer details, financial records, and 
proprietary algorithms—making APIs the crown jewels of digital businesses.

The Challenges of Legacy Security Tools
Legacy tools like Web Application Firewalls (WAFs), API gateways, and Content Delivery 
Networks (CDNs) were designed for traditional web security paradigms. They excel at 
protecting north-south traffic—the data flow into and out of a network—but fall short in 
managing API-specific risks. These tools cannot:

1. Detect anomalous behavior unique to API endpoints.

2. Monitor lateral (east-west) API traffic within distributed architectures.

3. Identify shadow APIs or misconfigurations.

4. Protect against complex API-specific attacks, such as those exploiting business logic 
flaws.

This paper explores these limitations and highlights how modern API security platforms 
overcome these challenges.

2. Understanding North-South vs. East-West 
Traffic

Defining Network Traffic Flows
• North-South Traffic: Refers to data entering or exiting an organization’s network 

perimeter. Examples include external user requests accessing an API endpoint or API 
calls to third-party integrations. Tools like WAFs inspect this traffic at the boundary to 
block malicious payloads.

• East-West Traffic: Refers to internal communication within a network, such as data 
exchanged between microservices, databases, and containers. This traffic is essential 
for API-centric and microservices-based architectures but is often unmonitored by 
traditional tools.

The Growth of East-West Traffic
Modern architectures such as Kubernetes clusters and service meshes generate massive 
east-west traffic:

• Statistic: Over 70% of data center traffic is now east-west.

• Example: A payment microservice communicating with fraud detection and order 
management APIs within the same network.

Why Legacy Technologies Focus on North-South Traffic
1. Architecture Design:

◦ WAFs, CDNs, and gateways are perimeter-focused. They inspect traffic entering or 
leaving the network boundary (north-south) but lack visibility into lateral (east-west) 
communications within internal environments.

◦ For example, WAFs analyze HTTP/HTTPS traffic but do not monitor internal 
API-to-API calls, which often use protocols like gRPC or AMQP.

2. Stateless Operation:

◦ Legacy tools operate on predefined rules or signatures, which work well for 
north-south attacks like SQL injection or XSS but fail to track the context of API 
communications required for detecting misuse or abuse.

3. Lack of Application Awareness:

◦ These tools are unaware of business logic embedded in APIs, leaving them blind to 
attacks like Broken Object Level Authorization (BOLA).

3. The Role and Limitations of Legacy Technologies

Web Application Firewalls (WAFs)
• Strengths: Block known threats using signature-based detection and protect against 

common web vulnerabilities like SQL injection and XSS.

• Weaknesses:

◦ Limited to inspecting perimeter HTTP/HTTPS traffic.

◦ Cannot understand API-specific protocols like JSON, REST, or GraphQL deeply.

◦ Blind to API behavior anomalies, such as an authenticated user performing excessive 
unauthorized actions.

API Gateways
• Strengths: Provide routing, rate limiting, and authentication for north-south API calls.

• Weaknesses:

◦ Focus solely on external traffic, ignoring internal API-to-API communication.

◦ Lack runtime threat detection and context-aware analysis

Content Delivery Networks (CDNs)
• Strengths: Optimize delivery of static content and mitigate DDoS attacks.

• Weaknesses:

◦ Designed for static content, not dynamic API interactions.

◦ No support for detecting API-specific attacks like credential stuffing.

Example: A breached API can allow attackers to move laterally within an organization. If they 
exploit a shadow API (an API that is undocumented and operate outside security oversight) 
connected to internal databases, legacy tools cannot detect or stop the attack.

Beyond the Perimeter: 
Uncovering API Threats Hidden 
from Legacy Technologies

1

W h i t e P a p e r

 4. The Threats Hidden from Legacy Tools

East-West Attack Vectors
• API Parameter Tampering: Malicious actors manipulate API parameters to bypass controls 

or extract sensitive data.

• Misconfigured APIs: APIs with overly permissive settings expose sensitive data 
unintentionally.

• Shadow and Zombie APIs:

◦ Shadow APIs are undocumented and operate outside security oversight.

◦ Zombie APIs are deprecated APIs that remain active and vulnerable.

• Internal Threats: These are threats that occur inside the perimeter that may be from 
employees with credentialed access or bad actors that have broken into the network and 
are manipulating APIs for gain.

Impact of Blind Spots
1. Data Breaches: Internal APIs often handle sensitive data. An attacker accessing these 

APIs through lateral movement risks major data exfiltration.

2. Compliance Risks: Lack of API monitoring can lead to regulatory violations, resulting in 
penalties and reputational damage.

 5. The Case for Modern API Security Solutions

Core Capabilities of Advanced API Security
1. Behavioral Analysis:

◦ Use machine learning to analyze API traffic over time.

◦ Detect anomalies, such as an API request that deviates from normal patterns.

2. Comprehensive Visibility:

◦ Monitor north-south and east-west traffic.

◦ Automatically discover shadow and zombie APIs.

3. Real-Time Protection:

◦ Stop suspicious API calls instantly to prevent breaches.

◦ Identify and block zero-day vulnerabilities.

4. Seamless Integration:

◦ Enhance existing tools like WAFs and SIEMs by adding API-specific intelligence.

Example: A retailer stopped a lateral movement attack by using an API security platform to 
identify unusual data transfers within its east-west traffic.

 6. Benefits of Comprehensive API Security

Core Capabilities of Advanced API Security
• Enhanced Threat Detection: Identify API misuse and sophisticated attacks like BOLA.

• Improved Compliance: Protect sensitive data and align with regulations like GDPR.

• Operational Insights: Optimize API performance and security through detailed traffic 
analysis.

 7. Conclusion and Next Steps

To secure APIs comprehensively, organizations must move beyond legacy tools and adopt 
advanced API security platforms. These solutions provide the visibility, intelligence, and 
real-time protection necessary to safeguard APIs across their lifecycle.

Checklist for Assessing API Security
1. Do we monitor both north-south and east-west traffic?

2. Are shadow and zombie APIs identified and secured?

3. Can our tools detect API-specific anomalies?

4. Do we meet compliance standards for API data security?

With modern API security, organizations can confidently protect their digital ecosystems 
against today’s most advanced threats.

 

 



1. Introduction

The API Security Landscape
APIs are the backbone of modern digital interactions, acting as the connectors for 
microservices, mobile apps, partner integrations, and internal systems. While their adoption 
drives agility and innovation, APIs have become an attractive target for attackers. 
API-centric architectures process sensitive data—customer details, financial records, and 
proprietary algorithms—making APIs the crown jewels of digital businesses.

The Challenges of Legacy Security Tools
Legacy tools like Web Application Firewalls (WAFs), API gateways, and Content Delivery 
Networks (CDNs) were designed for traditional web security paradigms. They excel at 
protecting north-south traffic—the data flow into and out of a network—but fall short in 
managing API-specific risks. These tools cannot:

1. Detect anomalous behavior unique to API endpoints.

2. Monitor lateral (east-west) API traffic within distributed architectures.

3. Identify shadow APIs or misconfigurations.

4. Protect against complex API-specific attacks, such as those exploiting business logic 
flaws.

This paper explores these limitations and highlights how modern API security platforms 
overcome these challenges.

2. Understanding North-South vs. East-West 
Traffic

Defining Network Traffic Flows
• North-South Traffic: Refers to data entering or exiting an organization’s network 

perimeter. Examples include external user requests accessing an API endpoint or API 
calls to third-party integrations. Tools like WAFs inspect this traffic at the boundary to 
block malicious payloads.

• East-West Traffic: Refers to internal communication within a network, such as data 
exchanged between microservices, databases, and containers. This traffic is essential 
for API-centric and microservices-based architectures but is often unmonitored by 
traditional tools.

The Growth of East-West Traffic
Modern architectures such as Kubernetes clusters and service meshes generate massive 
east-west traffic:

• Statistic: Over 70% of data center traffic is now east-west.

• Example: A payment microservice communicating with fraud detection and order 
management APIs within the same network.

Why Legacy Technologies Focus on North-South Traffic
1. Architecture Design:

◦ WAFs, CDNs, and gateways are perimeter-focused. They inspect traffic entering or 
leaving the network boundary (north-south) but lack visibility into lateral (east-west) 
communications within internal environments.

◦ For example, WAFs analyze HTTP/HTTPS traffic but do not monitor internal 
API-to-API calls, which often use protocols like gRPC or AMQP.

2. Stateless Operation:

◦ Legacy tools operate on predefined rules or signatures, which work well for 
north-south attacks like SQL injection or XSS but fail to track the context of API 
communications required for detecting misuse or abuse.

3. Lack of Application Awareness:

◦ These tools are unaware of business logic embedded in APIs, leaving them blind to 
attacks like Broken Object Level Authorization (BOLA).

3. The Role and Limitations of Legacy Technologies

Web Application Firewalls (WAFs)
• Strengths: Block known threats using signature-based detection and protect against 

common web vulnerabilities like SQL injection and XSS.

• Weaknesses:

◦ Limited to inspecting perimeter HTTP/HTTPS traffic.

◦ Cannot understand API-specific protocols like JSON, REST, or GraphQL deeply.

◦ Blind to API behavior anomalies, such as an authenticated user performing excessive 
unauthorized actions.

API Gateways
• Strengths: Provide routing, rate limiting, and authentication for north-south API calls.

• Weaknesses:

◦ Focus solely on external traffic, ignoring internal API-to-API communication.

◦ Lack runtime threat detection and context-aware analysis

Content Delivery Networks (CDNs)
• Strengths: Optimize delivery of static content and mitigate DDoS attacks.

• Weaknesses:

◦ Designed for static content, not dynamic API interactions.

◦ No support for detecting API-specific attacks like credential stuffing.

Example: A breached API can allow attackers to move laterally within an organization. If they 
exploit a shadow API (an API that is undocumented and operate outside security oversight) 
connected to internal databases, legacy tools cannot detect or stop the attack.

2

 4. The Threats Hidden from Legacy Tools

East-West Attack Vectors
• API Parameter Tampering: Malicious actors manipulate API parameters to bypass controls 

or extract sensitive data.

• Misconfigured APIs: APIs with overly permissive settings expose sensitive data 
unintentionally.

• Shadow and Zombie APIs:

◦ Shadow APIs are undocumented and operate outside security oversight.

◦ Zombie APIs are deprecated APIs that remain active and vulnerable.

• Internal Threats: These are threats that occur inside the perimeter that may be from 
employees with credentialed access or bad actors that have broken into the network and 
are manipulating APIs for gain.

Impact of Blind Spots
1. Data Breaches: Internal APIs often handle sensitive data. An attacker accessing these 

APIs through lateral movement risks major data exfiltration.

2. Compliance Risks: Lack of API monitoring can lead to regulatory violations, resulting in 
penalties and reputational damage.

 5. The Case for Modern API Security Solutions

Core Capabilities of Advanced API Security
1. Behavioral Analysis:

◦ Use machine learning to analyze API traffic over time.

◦ Detect anomalies, such as an API request that deviates from normal patterns.

2. Comprehensive Visibility:

◦ Monitor north-south and east-west traffic.

◦ Automatically discover shadow and zombie APIs.

3. Real-Time Protection:

◦ Stop suspicious API calls instantly to prevent breaches.

◦ Identify and block zero-day vulnerabilities.

4. Seamless Integration:

◦ Enhance existing tools like WAFs and SIEMs by adding API-specific intelligence.

Example: A retailer stopped a lateral movement attack by using an API security platform to 
identify unusual data transfers within its east-west traffic.

 6. Benefits of Comprehensive API Security

Core Capabilities of Advanced API Security
• Enhanced Threat Detection: Identify API misuse and sophisticated attacks like BOLA.

• Improved Compliance: Protect sensitive data and align with regulations like GDPR.

• Operational Insights: Optimize API performance and security through detailed traffic 
analysis.

 7. Conclusion and Next Steps

To secure APIs comprehensively, organizations must move beyond legacy tools and adopt 
advanced API security platforms. These solutions provide the visibility, intelligence, and 
real-time protection necessary to safeguard APIs across their lifecycle.

Checklist for Assessing API Security
1. Do we monitor both north-south and east-west traffic?

2. Are shadow and zombie APIs identified and secured?

3. Can our tools detect API-specific anomalies?

4. Do we meet compliance standards for API data security?

With modern API security, organizations can confidently protect their digital ecosystems 
against today’s most advanced threats.

 

 



1. Introduction

The API Security Landscape
APIs are the backbone of modern digital interactions, acting as the connectors for 
microservices, mobile apps, partner integrations, and internal systems. While their adoption 
drives agility and innovation, APIs have become an attractive target for attackers. 
API-centric architectures process sensitive data—customer details, financial records, and 
proprietary algorithms—making APIs the crown jewels of digital businesses.

The Challenges of Legacy Security Tools
Legacy tools like Web Application Firewalls (WAFs), API gateways, and Content Delivery 
Networks (CDNs) were designed for traditional web security paradigms. They excel at 
protecting north-south traffic—the data flow into and out of a network—but fall short in 
managing API-specific risks. These tools cannot:

1. Detect anomalous behavior unique to API endpoints.

2. Monitor lateral (east-west) API traffic within distributed architectures.

3. Identify shadow APIs or misconfigurations.

4. Protect against complex API-specific attacks, such as those exploiting business logic 
flaws.

This paper explores these limitations and highlights how modern API security platforms 
overcome these challenges.

2. Understanding North-South vs. East-West 
Traffic

Defining Network Traffic Flows
• North-South Traffic: Refers to data entering or exiting an organization’s network 

perimeter. Examples include external user requests accessing an API endpoint or API 
calls to third-party integrations. Tools like WAFs inspect this traffic at the boundary to 
block malicious payloads.

• East-West Traffic: Refers to internal communication within a network, such as data 
exchanged between microservices, databases, and containers. This traffic is essential 
for API-centric and microservices-based architectures but is often unmonitored by 
traditional tools.

The Growth of East-West Traffic
Modern architectures such as Kubernetes clusters and service meshes generate massive 
east-west traffic:

• Statistic: Over 70% of data center traffic is now east-west.

• Example: A payment microservice communicating with fraud detection and order 
management APIs within the same network.

Why Legacy Technologies Focus on North-South Traffic
1. Architecture Design:

◦ WAFs, CDNs, and gateways are perimeter-focused. They inspect traffic entering or 
leaving the network boundary (north-south) but lack visibility into lateral (east-west) 
communications within internal environments.

◦ For example, WAFs analyze HTTP/HTTPS traffic but do not monitor internal 
API-to-API calls, which often use protocols like gRPC or AMQP.

2. Stateless Operation:

◦ Legacy tools operate on predefined rules or signatures, which work well for 
north-south attacks like SQL injection or XSS but fail to track the context of API 
communications required for detecting misuse or abuse.

3. Lack of Application Awareness:

◦ These tools are unaware of business logic embedded in APIs, leaving them blind to 
attacks like Broken Object Level Authorization (BOLA).

3. The Role and Limitations of Legacy Technologies

Web Application Firewalls (WAFs)
• Strengths: Block known threats using signature-based detection and protect against 

common web vulnerabilities like SQL injection and XSS.

• Weaknesses:

◦ Limited to inspecting perimeter HTTP/HTTPS traffic.

◦ Cannot understand API-specific protocols like JSON, REST, or GraphQL deeply.

◦ Blind to API behavior anomalies, such as an authenticated user performing excessive 
unauthorized actions.

API Gateways
• Strengths: Provide routing, rate limiting, and authentication for north-south API calls.

• Weaknesses:

◦ Focus solely on external traffic, ignoring internal API-to-API communication.

◦ Lack runtime threat detection and context-aware analysis

Content Delivery Networks (CDNs)
• Strengths: Optimize delivery of static content and mitigate DDoS attacks.

• Weaknesses:

◦ Designed for static content, not dynamic API interactions.

◦ No support for detecting API-specific attacks like credential stuffing.

Example: A breached API can allow attackers to move laterally within an organization. If they 
exploit a shadow API (an API that is undocumented and operate outside security oversight) 
connected to internal databases, legacy tools cannot detect or stop the attack.

3

 4. The Threats Hidden from Legacy Tools

East-West Attack Vectors
• API Parameter Tampering: Malicious actors manipulate API parameters to bypass controls 

or extract sensitive data.

• Misconfigured APIs: APIs with overly permissive settings expose sensitive data 
unintentionally.

• Shadow and Zombie APIs:

◦ Shadow APIs are undocumented and operate outside security oversight.

◦ Zombie APIs are deprecated APIs that remain active and vulnerable.

• Internal Threats: These are threats that occur inside the perimeter that may be from 
employees with credentialed access or bad actors that have broken into the network and 
are manipulating APIs for gain.

Impact of Blind Spots
1. Data Breaches: Internal APIs often handle sensitive data. An attacker accessing these 

APIs through lateral movement risks major data exfiltration.

2. Compliance Risks: Lack of API monitoring can lead to regulatory violations, resulting in 
penalties and reputational damage.

 5. The Case for Modern API Security Solutions

Core Capabilities of Advanced API Security
1. Behavioral Analysis:

◦ Use machine learning to analyze API traffic over time.

◦ Detect anomalies, such as an API request that deviates from normal patterns.

2. Comprehensive Visibility:

◦ Monitor north-south and east-west traffic.

◦ Automatically discover shadow and zombie APIs.

3. Real-Time Protection:

◦ Stop suspicious API calls instantly to prevent breaches.

◦ Identify and block zero-day vulnerabilities.

4. Seamless Integration:

◦ Enhance existing tools like WAFs and SIEMs by adding API-specific intelligence.

Example: A retailer stopped a lateral movement attack by using an API security platform to 
identify unusual data transfers within its east-west traffic.

 6. Benefits of Comprehensive API Security

Core Capabilities of Advanced API Security
• Enhanced Threat Detection: Identify API misuse and sophisticated attacks like BOLA.

• Improved Compliance: Protect sensitive data and align with regulations like GDPR.

• Operational Insights: Optimize API performance and security through detailed traffic 
analysis.

 7. Conclusion and Next Steps

To secure APIs comprehensively, organizations must move beyond legacy tools and adopt 
advanced API security platforms. These solutions provide the visibility, intelligence, and 
real-time protection necessary to safeguard APIs across their lifecycle.

Checklist for Assessing API Security
1. Do we monitor both north-south and east-west traffic?

2. Are shadow and zombie APIs identified and secured?

3. Can our tools detect API-specific anomalies?

4. Do we meet compliance standards for API data security?

With modern API security, organizations can confidently protect their digital ecosystems 
against today’s most advanced threats.

 

 



1. Introduction

The API Security Landscape
APIs are the backbone of modern digital interactions, acting as the connectors for 
microservices, mobile apps, partner integrations, and internal systems. While their adoption 
drives agility and innovation, APIs have become an attractive target for attackers. 
API-centric architectures process sensitive data—customer details, financial records, and 
proprietary algorithms—making APIs the crown jewels of digital businesses.

The Challenges of Legacy Security Tools
Legacy tools like Web Application Firewalls (WAFs), API gateways, and Content Delivery 
Networks (CDNs) were designed for traditional web security paradigms. They excel at 
protecting north-south traffic—the data flow into and out of a network—but fall short in 
managing API-specific risks. These tools cannot:

1. Detect anomalous behavior unique to API endpoints.

2. Monitor lateral (east-west) API traffic within distributed architectures.

3. Identify shadow APIs or misconfigurations.

4. Protect against complex API-specific attacks, such as those exploiting business logic 
flaws.

This paper explores these limitations and highlights how modern API security platforms 
overcome these challenges.

2. Understanding North-South vs. East-West 
Traffic

Defining Network Traffic Flows
• North-South Traffic: Refers to data entering or exiting an organization’s network 

perimeter. Examples include external user requests accessing an API endpoint or API 
calls to third-party integrations. Tools like WAFs inspect this traffic at the boundary to 
block malicious payloads.

• East-West Traffic: Refers to internal communication within a network, such as data 
exchanged between microservices, databases, and containers. This traffic is essential 
for API-centric and microservices-based architectures but is often unmonitored by 
traditional tools.

The Growth of East-West Traffic
Modern architectures such as Kubernetes clusters and service meshes generate massive 
east-west traffic:

• Statistic: Over 70% of data center traffic is now east-west.

• Example: A payment microservice communicating with fraud detection and order 
management APIs within the same network.

Why Legacy Technologies Focus on North-South Traffic
1. Architecture Design:

◦ WAFs, CDNs, and gateways are perimeter-focused. They inspect traffic entering or 
leaving the network boundary (north-south) but lack visibility into lateral (east-west) 
communications within internal environments.

◦ For example, WAFs analyze HTTP/HTTPS traffic but do not monitor internal 
API-to-API calls, which often use protocols like gRPC or AMQP.

2. Stateless Operation:

◦ Legacy tools operate on predefined rules or signatures, which work well for 
north-south attacks like SQL injection or XSS but fail to track the context of API 
communications required for detecting misuse or abuse.

3. Lack of Application Awareness:

◦ These tools are unaware of business logic embedded in APIs, leaving them blind to 
attacks like Broken Object Level Authorization (BOLA).

3. The Role and Limitations of Legacy Technologies

Web Application Firewalls (WAFs)
• Strengths: Block known threats using signature-based detection and protect against 

common web vulnerabilities like SQL injection and XSS.

• Weaknesses:

◦ Limited to inspecting perimeter HTTP/HTTPS traffic.

◦ Cannot understand API-specific protocols like JSON, REST, or GraphQL deeply.

◦ Blind to API behavior anomalies, such as an authenticated user performing excessive 
unauthorized actions.

API Gateways
• Strengths: Provide routing, rate limiting, and authentication for north-south API calls.

• Weaknesses:

◦ Focus solely on external traffic, ignoring internal API-to-API communication.

◦ Lack runtime threat detection and context-aware analysis

Content Delivery Networks (CDNs)
• Strengths: Optimize delivery of static content and mitigate DDoS attacks.

• Weaknesses:

◦ Designed for static content, not dynamic API interactions.

◦ No support for detecting API-specific attacks like credential stuffing.

Example: A breached API can allow attackers to move laterally within an organization. If they 
exploit a shadow API (an API that is undocumented and operate outside security oversight) 
connected to internal databases, legacy tools cannot detect or stop the attack.

4

 4. The Threats Hidden from Legacy Tools

East-West Attack Vectors
• API Parameter Tampering: Malicious actors manipulate API parameters to bypass controls 

or extract sensitive data.

• Misconfigured APIs: APIs with overly permissive settings expose sensitive data 
unintentionally.

• Shadow and Zombie APIs:

◦ Shadow APIs are undocumented and operate outside security oversight.

◦ Zombie APIs are deprecated APIs that remain active and vulnerable.

• Internal Threats: These are threats that occur inside the perimeter that may be from 
employees with credentialed access or bad actors that have broken into the network and 
are manipulating APIs for gain.

Impact of Blind Spots
1. Data Breaches: Internal APIs often handle sensitive data. An attacker accessing these 

APIs through lateral movement risks major data exfiltration.

2. Compliance Risks: Lack of API monitoring can lead to regulatory violations, resulting in 
penalties and reputational damage.

 5. The Case for Modern API Security Solutions

Core Capabilities of Advanced API Security
1. Behavioral Analysis:

◦ Use machine learning to analyze API traffic over time.

◦ Detect anomalies, such as an API request that deviates from normal patterns.

2. Comprehensive Visibility:

◦ Monitor north-south and east-west traffic.

◦ Automatically discover shadow and zombie APIs.

3. Real-Time Protection:

◦ Stop suspicious API calls instantly to prevent breaches.

◦ Identify and block zero-day vulnerabilities.

4. Seamless Integration:

◦ Enhance existing tools like WAFs and SIEMs by adding API-specific intelligence.

Example: A retailer stopped a lateral movement attack by using an API security platform to 
identify unusual data transfers within its east-west traffic.

 6. Benefits of Comprehensive API Security

Core Capabilities of Advanced API Security
• Enhanced Threat Detection: Identify API misuse and sophisticated attacks like BOLA.

• Improved Compliance: Protect sensitive data and align with regulations like GDPR.

• Operational Insights: Optimize API performance and security through detailed traffic 
analysis.

 7. Conclusion and Next Steps

To secure APIs comprehensively, organizations must move beyond legacy tools and adopt 
advanced API security platforms. These solutions provide the visibility, intelligence, and 
real-time protection necessary to safeguard APIs across their lifecycle.

Checklist for Assessing API Security
1. Do we monitor both north-south and east-west traffic?

2. Are shadow and zombie APIs identified and secured?

3. Can our tools detect API-specific anomalies?

4. Do we meet compliance standards for API data security?

With modern API security, organizations can confidently protect their digital ecosystems 
against today’s most advanced threats.

 

 



1. Introduction

The API Security Landscape
APIs are the backbone of modern digital interactions, acting as the connectors for 
microservices, mobile apps, partner integrations, and internal systems. While their adoption 
drives agility and innovation, APIs have become an attractive target for attackers. 
API-centric architectures process sensitive data—customer details, financial records, and 
proprietary algorithms—making APIs the crown jewels of digital businesses.

The Challenges of Legacy Security Tools
Legacy tools like Web Application Firewalls (WAFs), API gateways, and Content Delivery 
Networks (CDNs) were designed for traditional web security paradigms. They excel at 
protecting north-south traffic—the data flow into and out of a network—but fall short in 
managing API-specific risks. These tools cannot:

1. Detect anomalous behavior unique to API endpoints.

2. Monitor lateral (east-west) API traffic within distributed architectures.

3. Identify shadow APIs or misconfigurations.

4. Protect against complex API-specific attacks, such as those exploiting business logic 
flaws.

This paper explores these limitations and highlights how modern API security platforms 
overcome these challenges.

2. Understanding North-South vs. East-West 
Traffic

Defining Network Traffic Flows
• North-South Traffic: Refers to data entering or exiting an organization’s network 

perimeter. Examples include external user requests accessing an API endpoint or API 
calls to third-party integrations. Tools like WAFs inspect this traffic at the boundary to 
block malicious payloads.

• East-West Traffic: Refers to internal communication within a network, such as data 
exchanged between microservices, databases, and containers. This traffic is essential 
for API-centric and microservices-based architectures but is often unmonitored by 
traditional tools.

The Growth of East-West Traffic
Modern architectures such as Kubernetes clusters and service meshes generate massive 
east-west traffic:

• Statistic: Over 70% of data center traffic is now east-west.

• Example: A payment microservice communicating with fraud detection and order 
management APIs within the same network.

Why Legacy Technologies Focus on North-South Traffic
1. Architecture Design:

◦ WAFs, CDNs, and gateways are perimeter-focused. They inspect traffic entering or 
leaving the network boundary (north-south) but lack visibility into lateral (east-west) 
communications within internal environments.

◦ For example, WAFs analyze HTTP/HTTPS traffic but do not monitor internal 
API-to-API calls, which often use protocols like gRPC or AMQP.

2. Stateless Operation:

◦ Legacy tools operate on predefined rules or signatures, which work well for 
north-south attacks like SQL injection or XSS but fail to track the context of API 
communications required for detecting misuse or abuse.

3. Lack of Application Awareness:

◦ These tools are unaware of business logic embedded in APIs, leaving them blind to 
attacks like Broken Object Level Authorization (BOLA).

3. The Role and Limitations of Legacy Technologies

Web Application Firewalls (WAFs)
• Strengths: Block known threats using signature-based detection and protect against 

common web vulnerabilities like SQL injection and XSS.

• Weaknesses:

◦ Limited to inspecting perimeter HTTP/HTTPS traffic.

◦ Cannot understand API-specific protocols like JSON, REST, or GraphQL deeply.

◦ Blind to API behavior anomalies, such as an authenticated user performing excessive 
unauthorized actions.

API Gateways
• Strengths: Provide routing, rate limiting, and authentication for north-south API calls.

• Weaknesses:

◦ Focus solely on external traffic, ignoring internal API-to-API communication.

◦ Lack runtime threat detection and context-aware analysis

Content Delivery Networks (CDNs)
• Strengths: Optimize delivery of static content and mitigate DDoS attacks.

• Weaknesses:

◦ Designed for static content, not dynamic API interactions.

◦ No support for detecting API-specific attacks like credential stuffing.

Example: A breached API can allow attackers to move laterally within an organization. If they 
exploit a shadow API (an API that is undocumented and operate outside security oversight) 
connected to internal databases, legacy tools cannot detect or stop the attack.

5

 4. The Threats Hidden from Legacy Tools

East-West Attack Vectors
• API Parameter Tampering: Malicious actors manipulate API parameters to bypass controls 

or extract sensitive data.

• Misconfigured APIs: APIs with overly permissive settings expose sensitive data 
unintentionally.

• Shadow and Zombie APIs:

◦ Shadow APIs are undocumented and operate outside security oversight.

◦ Zombie APIs are deprecated APIs that remain active and vulnerable.

• Internal Threats: These are threats that occur inside the perimeter that may be from 
employees with credentialed access or bad actors that have broken into the network and 
are manipulating APIs for gain.

Impact of Blind Spots
1. Data Breaches: Internal APIs often handle sensitive data. An attacker accessing these 

APIs through lateral movement risks major data exfiltration.

2. Compliance Risks: Lack of API monitoring can lead to regulatory violations, resulting in 
penalties and reputational damage.

 5. The Case for Modern API Security Solutions

Core Capabilities of Advanced API Security
1. Behavioral Analysis:

◦ Use machine learning to analyze API traffic over time.

◦ Detect anomalies, such as an API request that deviates from normal patterns.

2. Comprehensive Visibility:

◦ Monitor north-south and east-west traffic.

◦ Automatically discover shadow and zombie APIs.

3. Real-Time Protection:

◦ Stop suspicious API calls instantly to prevent breaches.

◦ Identify and block zero-day vulnerabilities.

4. Seamless Integration:

◦ Enhance existing tools like WAFs and SIEMs by adding API-specific intelligence.

Example: A retailer stopped a lateral movement attack by using an API security platform to 
identify unusual data transfers within its east-west traffic.

 6. Benefits of Comprehensive API Security

Core Capabilities of Advanced API Security
• Enhanced Threat Detection: Identify API misuse and sophisticated attacks like BOLA.

• Improved Compliance: Protect sensitive data and align with regulations like GDPR.

• Operational Insights: Optimize API performance and security through detailed traffic 
analysis.

 7. Conclusion and Next Steps

To secure APIs comprehensively, organizations must move beyond legacy tools and adopt 
advanced API security platforms. These solutions provide the visibility, intelligence, and 
real-time protection necessary to safeguard APIs across their lifecycle.

Checklist for Assessing API Security
1. Do we monitor both north-south and east-west traffic?

2. Are shadow and zombie APIs identified and secured?

3. Can our tools detect API-specific anomalies?

4. Do we meet compliance standards for API data security?

With modern API security, organizations can confidently protect their digital ecosystems 
against today’s most advanced threats.

 

 


